
Krzysztof R. Apt
Frank S. de Boer
Ernst-Rüdiger Olderog

Verification of

Sequential and Concurrent

Programs

Third, Extended Edition

Springer





Preface

C
OMPUTER PROGRAMS ARE by now indispensable parts of sys-
tems that we use or rely on in our daily lives. Numerous exam-
ples include booking terminals in travel agencies, automatic teller

machines, ever more sophisticated services based on telecommunication, sig-
naling systems for cars and trains, luggage handling systems at airports or
automatic pilots in airplanes.

For the customers of travel agencies and banks and for the passengers of
trains and airplanes the proper functioning and safety of these systems is of
paramount importance. Money orders should reflect the right bank accounts
and airplanes should stay on the desired route. Therefore the underlying
computer programs should work correctly; that is they should satisfy their
requirements. A challenge for computer science is to develop methods that
ensure program correctness.

Common to the applications mentioned above is that the computer pro-
grams have to coordinate a number of system components that can work
concurrently, for example the terminals in the individual travel agencies ac-
cessing a central database or the sensors and signals used in a distributed
railway signaling system. So to be able to verify such programs we need to
have at our disposal methods that allow us to deal with correctness of con-
current programs, as well.

Structure of This Book

The aim of this book is to provide a systematic exposition of one of the
most common approaches to program verification. This approach is usually
called assertional, because it relies on the use of assertions that are attached
to program control points. Starting from a simple class of sequential pro-
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grams, known as while programs, we proceed in a systematic manner in two
directions:

• to more complex classes of sequential programs including recursive proce-
dures and objects, and

• to concurrent programs, both parallel and distributed.

We consider here sequential programs in the form of deterministic and
nondeterministic programs, and concurrent programs in the form of paral-
lel and distributed programs. Deterministic programs cover while programs,
recursive programs, and a simple class of object-oriented programs. Nondeter-
ministic programs are used to analyze concurrent programs and the concept
of fairness by means of program transformations. Parallel programs consist
of several sequential components that can access shared memory. By con-
trast, distributed programs consist of components with local memory that
can communicate only by sending and receiving messages.

For each of these classes of programs their input/output behavior in the
sense of so-called partial and total correctness is studied. For the verification
of these correctness properties an axiomatic approach involving assertions is
used. This approach was initiated by Hoare in 1969 for deterministic pro-
grams and extended by various researchers to other classes of programs. It is
combined here with the use of program transformations.

For each class of programs a uniform presentation is provided. After defin-
ing the syntax we introduce a structured operational semantics as originally
proposed by Hennessy and Plotkin in 1979 and further developed by Plotkin
in 1981. Then proof systems for the verification of partial and total cor-
rectness are introduced, which are formally justified in the corresponding
soundness theorems.

The use of these proof systems is demonstrated with the help of case stud-
ies. In particular, solutions to classical problems such as producer/consumer
and mutual exclusion are formally verified. Each chapter concludes with a
list of exercises and bibliographic remarks.

The exposition assumes elementary knowledge of programming languages
and logic. Therefore this book belongs to the area of programming languages
but at the same time it is firmly based on mathematical logic. All prerequisites
are provided in the preparatory Chapter 2 of Part I.

In Part II of the book we study deterministic programs. In Chapter 3
Hoare’s approach to program verification is explained for while programs.
Next, we move to the more ambitious structuring concepts of recursive and
object-oriented programs. First, parameterless recursive procedures are stud-
ied in Chapter 4, and then call-by-value parameters are added in Chap-
ter 5. These two chapters are taken as preparations to study a class of
object-oriented programs in Chapter 6. This chapter is based on the work
of the second author initiated in 1990, but the presentation is entirely new.

In Part III of the book we study parallel programs with shared variables.
Since these are much more difficult to deal with than sequential programs,
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they are introduced in a stepwise manner in Chapters 7, 8, and 9. We base
our presentation on the approach by Owicki and Gries originally proposed in
1976 and on an extension of it by the authors dealing with total correctness.

In Part IV we turn to nondeterministic and distributed programs. Nonde-
terministic sequential programs are studied in Chapter 10. The presentation
is based on the work of Dijkstra from 1976 and Gries from 1981. The study
of this class of programs also serves as a preparation for dealing with dis-
tributed programs in Chapter 11. The verification method presented there
is based on a transformation of distributed programs into nondeterministic
ones proposed by the first author in 1986. In Chapter 12 the issue of fairness
is studied in the framework of nondeterministic programs. The approach is
based on the method of explicit schedulers developed by the first and third
authors in 1983.

Teaching from This Book

This book is appropriate for either a one- or two-semester introductory course
on program verification for upper division undergraduate studies or for grad-
uate studies.

In the first lecture the zero search example in Chapter 1 should be dis-
cussed. This example demonstrates which subtle errors can arise during the
design of parallel programs. Next we recommend moving on to Chapter 3
on while programs and before each of the sections on syntax, semantics and
verification, to refer to the corresponding sections of the preparatory Chap-
ter 2.

After Chapter 3 there are three natural alternatives to continue. The first
alternative is to proceed with more ambitious classes of sequential programs,
i.e., recursive programs in Chapters 4 and 5 and then object-oriented pro-
grams in Chapter 6. The second alternative is to proceed immediately to
parallel programs in Chapters 7, 8, and 9. The third alternative is to move
immediately to nondeterministic programs in Chapter 10 and then to dis-
tributed programs in Chapter 11. We remark that one section of Chapter 10
can be studied only after the chapters on parallel programs.

Chapter 12 on fairness covers a more advanced topic and can be used
during specialized seminars. Of course, it is also possible to follow the chapters
in the sequential order as they are presented in the book.

This text may also be used as an introduction to operational semantics.
We present below outlines of possible one-semester courses that can be taught
using this book. The dependencies of the chapters are shown in Fig. 0.1.
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Fig. 0.1 Dependencies of chapters. In Chapter 10 only Section 10.6 depends on
Chapter 9.

Changes in the Third Edition

The present, third edition of this book comes with a new co-author, Frank
S. de Boer, and with an additional topic that for many years has been at the
heart of his research: verification of object-oriented programs. Since this is
a notoriously difficult topic, we approach it in a stepwise manner and in a
setting where the notational complexity is kept at a minimum. This design
decision has led us to add three new chapters to our book.

• In Chapter 4 we introduce a class of recursive programs that extends deter-
ministic programs by parameterless procedures. Verifying such programs
makes use of proofs from assumptions (about calls of recursive procedures)
that are discharged later on.

• In Chapter 5 this class is extended to the recursive procedures with call-by-
value parameters. Semantically, this necessitates the concept of a stack for
storing the values of the actual parameters of recursively called procedures.
We capture this concept by using a block statement and a corresponding
semantic transition rule that models the desired stack behavior implicitly.

• In Chapter 6 object-oriented programs are studied in a minimal setting
where we focus on the following main characteristics of objects: they pos-
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sess (and encapsulate) their own local variables and interact via method
calls, and objects can be dynamically created.

To integrate these new chapters into the original text, we made various
changes in the preceding Chapters 2 and 3. For example, in Chapter 3 parallel
assignments and failure statements are introduced, and a correctness proof
of a program for partitioning an array is given as a preparation for the case
study of the Quicksort algorithm in Chapter 5. Also, in Chapter 10 the
transformation of parallel programs into nondeterministic programs is now
defined in a formal way. Also the references have been updated.
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In the Beginning





1 Introduction

1.1 An Example of a Concurrent Program . . . . . . . . . . . . . . . . 4

1.2 Program Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Structure of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Automating Program Verification . . . . . . . . . . . . . . . . . . . . 16

1.5 Assertional Methods in Practice . . . . . . . . . . . . . . . . . . . . . . 17

P ROGRAM VERIFICATION IS a systematic approach to proving

the correctness of programs. Correctness means that the programs

enjoy certain desirable properties. For sequential programs these properties

are delivery of correct results and termination. For concurrent programs,

that is, those with several active components, the properties of interference

freedom, deadlock freedom and fair behavior are also important.

The emphasis in this book is on verification of concurrent programs, in par-

ticular of parallel and distributed programs where the components commu-

nicate either via shared variables or explicit message passing. Such programs

are usually difficult to design, and errors are more a rule than an excep-

tion. Of course, we also consider sequential programs because they occur as

components of concurrent ones.

3



4 1 Introduction

1.1 An Example of a Concurrent Program

To illustrate the subtleties involved in the design of concurrent programs
consider the following simple problem, depicted in Figure 1.1.

Problem Let f be a function from integers to integers with a zero. Write a
concurrent program ZERO that finds such a zero.

Fig. 1.1 Zero search of a function f : integer → integer split into two subproblems
of finding a positive zero and a nonpositive zero.

The idea is to solve the problem by splitting it into two subproblems that
can be solved independently, namely finding a positive and a nonpositive
zero. Here z is called a positive zero of f if z > 0 and f(z) = 0, and it is
called a nonpositive zero if z ≤ 0 and f(z) = 0. We are now looking for
sequential programs S1 and S2 solving the two subproblems such that the
parallel execution of S1 and S2 solves the overall problem. We write [S1‖S2]
for a parallel composition of two sequential programs S1 and S2. Execution
of [S1‖S2] consists of executing the individual statements of S1 and S2 in
parallel. The program [S1‖S2] terminates when both S1 and S2 terminate.

Solution 1

Consider the following program S1:
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S1 ≡ found := false; x := 0;
while ¬found do

x := x + 1;
found := f(x) = 0

od.

S1 terminates when a positive zero of f is found. Similarly, the following
program S2 terminates when a nonpositive zero of f is found:

S2 ≡ found := false; y := 1;
while ¬found do

y := y − 1;
found := f(y) = 0

od.

Thus the program
ZERO-1 ≡ [S1‖S2],

the parallel composition of S1 and S2, appears to be a solution to the problem.
Note that the Boolean variable found can be accessed by both components
S1 and S2. This shared variable is used to exchange information about ter-
mination between the two components. ⊓⊔

Indeed, once ZERO-1 has terminated, one of the variables x or y stores
a zero of f , and ZERO-1 has solved the problem. Unfortunately, ZERO-1
need not terminate as the following scenario shows. Let f have only one zero,
a positive one. Consider an execution of ZERO-1, where initially only the
program’s first component S1 is active, until it terminates when the zero of
f is found. At this moment the second component S2 is activated, found is
reset to false, and since no other zeroes of f exist, found is never reset to
true. In other words, this execution of ZERO-1 never terminates.

Obviously our mistake consisted of initializing found to false twice —once
in each component. A straightforward solution would be to initialize found
only once, outside the parallel composition. This brings us to the following
corrected solution.

Solution 2

Let

S1 ≡ x := 0;
while ¬found do

x := x + 1;
found := f(x) = 0

od
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and

S2 ≡ y := 1;
while ¬found do

y := y − 1;
found := f(y) = 0

od.

Then
ZERO-2 ≡ found := false; [S1‖S2]

should be a solution to the problem. ⊓⊔

But is it actually? Unfortunately we fooled the reader again. Suppose
again that f has exactly one zero, a positive one, and consider an execution
of ZERO-2 where, initially, its second component S2 is activated until it
enters its loop. From that moment on only the first component S1 is executed
until it terminates upon finding a zero. Then the second component S2 is
activated again and so found is reset to false. Now, since no other zeroes
of f exist, found is never reset to true and this execution of ZERO-2 will
never terminate! Thus, the above solution is incorrect.

What went wrong? A close inspection of the scenario just presented reveals
that the problem arose because found could be reset to false once it was
already true. In this way, the information that a zero of f was found got
lost.

One way of correcting this mistake is by ensuring that found is never reset
to false inside the parallel composition. For this purpose it is sufficient to
replace the unconditional assignment

found := f(x) = 0

by the conditional one:

if f(x) = 0 then found := true fi

and similarly with the assignment found := f(y) = 0. Observe that these
changes do not affect the meaning of the component programs, but they alter
the meaning of the parallel program.

We thus obtain the following possible solution.

Solution 3

Let

S1 ≡ x := 0;
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while ¬found do
x := x + 1;
if f(x) = 0 then found := true fi

od

and

S2 ≡ y := 1;
while ¬found do

y := y − 1;
if f(y) = 0 then found := true fi

od.

Then
ZERO-3 ≡ found := false; [S1‖S2]

should be a solution to the problem. ⊓⊔

But is it really a solution? Suppose that f has only positive zeroes, and
consider an execution of ZERO-3 in which the first component S1 of the par-
allel program [S1‖S2] is never activated. Then this execution never terminates
even though f has a zero.

Admittedly, the above scenario is debatable. One might object that an
execution sequence in which one component of a parallel program is never
activated is illegal. After all, the main reason for writing parallel programs
is to have components executed in parallel. The problem here concerns the
definition of parallel composition. We did not exactly specify its meaning and
are now confronted with two different versions.

The simpler definition says that an execution of a parallel program [S1‖S2]
is obtained by an arbitrary interleaving of the executions of its components
S1 and S2. This definition does not allow us to make any assumption of the
relative speed of S1 and S2. An example is the execution of the above scenario
where only one component is active.

The more demanding definition of execution of parallel programs requires
that each component progress with a positive speed. This requirement is
modeled by the assumption of fairness meaning that every component of a
parallel program will eventually execute its next instruction. Under the as-
sumption of fairness ZERO-3 is a correct solution to the zero search problem.
In particular, the execution sequence of ZERO-3 discussed above is illegal.

We now present a solution that is appropriate when the fairness hypothesis
is not adopted. It consists of building into the program ZERO-3 a scheduler
which ensures fairness by forcing each component of the parallel program to
eventually execute its next instruction. To this end, we need a new program-
ming construct, await B then R end, allowing us to temporarily suspend
the execution of a component. Informally, a component of a parallel program
executes an await statement if the Boolean expression B evaluates to true.
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Statement R is then immediately executed as an indivisible action; during its
execution all other components of the parallel program are suspended. If B
evaluates to false, then the component executing the await statement itself
is suspended while other components can proceed. The suspended component
can be retried later.

In the following program we use an additional shared variable turn that
can store values 1 and 2 to indicate which component is to proceed.

Solution 4

Let

S1 ≡ x := 0;
while ¬found do

await turn = 1 then turn := 2 end;
x := x + 1;
if f(x) = 0 then found := true fi

od

and

S2 ≡ y := 1;
while ¬found do

await turn = 2 then turn := 1 end;
y := y − 1;
if f(y) = 0 then found := true fi

od.

Then
ZERO-4 ≡ turn := 1; found := false; [S1‖S2]

should be a solution to the problem when the fairness hypothesis is not
adopted. ¤

To better understand this solution, let us check that it is now impossi-
ble to execute only one component unless the other has terminated. Indeed,
with each loop iteration, turn is switched. As a consequence, no loop body
can be executed twice in succession. Thus a component can be activated
uninterruptedly for at most “one and a half” iterations. Once it reaches the
await statement the second time, it becomes suspended and progress can now
be achieved only by activation of the other component. The other component
can always proceed even if it happens to be in front of the await statement.
In other words, execution of ZERO-4 now alternates between the compo-
nents. But parallelism is still possible. For example, the assignments to x
and y can always be executed in parallel.
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But is ZERO-4 really a solution to the problem? Assume again that f
has exactly one positive zero. Consider an execution sequence of ZERO-4
in which the component S1 has just found this zero and is about to exe-
cute the statement found := true. Instead, S2 is activated and proceeds
by one and a half iterations through its loop until it reaches the state-
ment await turn = 2 then turn := 1 end. Since turn = 1 holds from the
last iteration, S2 is now blocked. Now S1 proceeds and terminates with
found := true. Since turn = 1 is still true, S2 cannot terminate but re-
mains suspended forever in front of its await statement. This situation is
called a deadlock.

To avoid such a deadlock, it suffices to reset the variable turn appropriately
at the end of each component. This leads us to the following solution.

Solution 5

Let

S1 ≡ x := 0;
while ¬found do

await turn = 1 then turn := 2 end;
x := x + 1;
if f(x) = 0 then found := true fi

od;
turn := 2

and

S2 ≡ y := 1;
while ¬found do

await turn = 2 then turn := 1 end;
y := y − 1;
if f(y) = 0 then found := true fi

od;
turn := 1.

Then
ZERO-5 ≡ turn := 1; found := false; [S1‖S2]

is a deadlock-free solution to the problem when the fairness hypothesis is not
adopted. ⊓⊔

Can you still follow the argument? We assure you that the above solution
is correct. It can, moreover, be improved. By definition, an execution of an
await statement, await B then R end, temporarily blocks all other com-
ponents of the parallel program until execution of R is completed. Reducing
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the execution time of the statement R decreases this suspension time and
results in a possible speed-up in a parallel execution. Here such an improve-
ment is possible —the assignments to the variable turn can be taken out of
the scope of the await statements. Thus we claim that the following program
is a better solution to the problem.

Solution 6

Let

S1 ≡ x := 0;
while ¬found do

wait turn = 1;
turn := 2;
x := x + 1;
if f(x) = 0 then found := true fi

od;
turn := 2

and

S2 ≡ y := 1;
while ¬found do

wait turn = 2;
turn := 1;
y := y − 1;
if f(y) = 0 then found := true fi

od;
turn := 1

and let as before

ZERO-6 ≡ turn := 1; found := false; [S1‖S2].

Here wait B is an instruction the execution of which suspends a component
if B evaluates to false and that has no effect otherwise. ⊓⊔

The only difference from Solution 5 is that now component S2 can be
activated —or as one says, interfere— between wait turn = 1 and turn := 2
of S1, and analogously for component S1. We have to show that such an
interference does not invalidate the desired program behavior.

First consider the case when S2 interferes with some statement not con-
taining the variable turn. Then this statement can be interchanged with the
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statement turn := 2 of S1, thus yielding an execution of the previous pro-
gram ZERO-5. Otherwise, we have to consider the two assignments turn := 1
of S2. The first assignment turn := 1 (inside the loop) cannot be executed
because immediately before its execution turn = 2 should hold, but by our
assumption S1 has just passed wait turn = 1. However, the second assign-
ment turn := 1 could be executed. But then S2 terminates, so found is true
and S1 will also terminate —immediately after finishing the current loop
iteration. Just in time —in the next loop iteration it would be blocked!

To summarize, activating S2 between wait turn = 1 and turn := 2 of S1

does not lead to any problems. A similar argument holds for activating S1.
Thus Solution 6 is indeed correct.

1.2 Program Correctness

The problem of zero search seemed to be completely trivial, and yet several
errors, sometimes subtle, crept in. The design of the final solution proceeded
through a disquieting series of trials and errors. From this experience it should
be clear that an informal justification of programs constructed in such a
manner is not sufficient. Instead, one needs a systematic approach to proving
correctness of programs.

Correctness means that certain desirable program properties hold. In the
case of sequential programs, where a control resides at each moment in only
one point, these properties usually are:

1. Partial correctness, that is, whenever a result is delivered it is correct
w.r.t. the task to be solved by the program. For example, upon termi-
nation of a sorting program, the input should indeed be sorted. Partial
means that the program is not guaranteed to terminate and thus deliver
a result at all.

2. Termination. For example, a sorting program should always terminate.
3. Absence of failures. For example, there should be no division by zero and

no overflow.

In the case of concurrent programs, where control can reside at the same
time in several control points, the above properties are much more difficult
to establish. Moreover, as observed before, we are then also interested in
establishing:

4. Interference freedom, that is, no component of a parallel program can
manipulate in an undesirable way the variables shared with another com-
ponent.

5. Deadlock freedom, that is, a parallel program does not end up in a situ-
ation where all nonterminated components are waiting indefinitely for a
condition to become true.
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6. Correctness under the fairness assumption. For example, the parallel pro-
gram ZERO--3 solves the zero search problem only under the assumption
of fairness.

A number of approaches to program verification have been proposed and
used in the literature. The most common of them is based on operational
reasoning, which is the way we reasoned about the correctness of Solution
6. This approach consists of an analysis in terms of the execution sequences
of the given program. For this purpose, an informal understanding of the
program semantics is used. While this analysis is often successful in the case
of sequential programs, it is much less so in the case of concurrent programs.
The number of possible execution sequences is often forbiddingly large and
it is all too easy to overlook one.

In this book we pursue a different approach based on axiomatic reasoning.
With this approach, we first need a language that makes it possible to ex-
press or specify the relevant program properties. We choose here the language
of predicate logic consisting of certain well-formed formulas. Such formulas
serve as so-called assertions expressing desirable program states. From logic
we also use the concept of a proof system consisting of axioms and proof
rules that allow us to formally prove that a given program satisfies the de-
sired properties. Such a proof will proceed in a syntax-directed manner by
induction on the structure of the program.

The origins of this approach to program verification can be traced back
to Turing [1949], but the first constructive efforts should be attributed to
Floyd [1967a] and Hoare [1969]. Floyd proposed an axiomatic method for
the verification of flowcharts, and Hoare developed this method further to
a syntax-directed approach dealing with while programs. Hoare’s approach
received a great deal of attention, and many Hoare-style proof systems dealing
with various programming constructs have been proposed since then. In 1976
and 1977, this approach was extended to parallel programs by Owicki and
Gries [1976a,1976b] and Lamport [1977], and in 1980 and 1981 to distributed
programs by Apt, Francez and de Roever [1980] and Levin and Gries [1981].
In 1991 an assertional proof system was introduced by de Boer [1991a] for a
parallel object-oriented language called POOL, developed by America [1987].

In our book we present a systematic account of the axiomatic approach
to program verification. It should be noted that the axiomatic approach as
described in the above articles has several limitations:

(1) the proof rules are designed only for the a posteriori verification of existing
programs, not for their systematic development;

(2) the proof rules reflect only the input/output behavior of programs, not
properties of their finite or infinite executions as they occur, for example,
in operating systems;

(3) the proof rules cannot deal with fairness.

Overcoming limitation (1) has motivated a large research activity on sys-
tematic development of programs together with their correctness proofs, ini-
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tiated by Dijkstra [1976] and extended by many others: see, for example, the
books by Gries [1981], Backhouse [1986], Kaldewaij [1990], Morgan [1994],
Back and von Wright [2008], and for parallel programs by Feijen and van
Gasteren [1999] and Misra [2001].

The fundamentals of program development are now well understood for
sequential programs; we indicate them in Chapters 3 and 10 of this book.
Interestingly, the proof rules suggested for the a posteriori verification of
sequential programs remain useful for formulating strategies for program de-
velopment.

Another approach aims at higher-level system development. The devel-
opment starts with an abstract system model which is stepwise refined to
a detailed model that can form a basis for a correct program. An example
of such a formal method for modelling and analysis at the system level is
Event-B, see Abrial and Hallerstede [2007].

To overcome limitations (2) and (3) one can use the approach based on
temporal logic introduced by Pnueli [1977]. Using temporal logic more gen-
eral program properties than input/output behavior can be expressed, for
example so-called liveness properties, and the fairness assumption can be
handled. However, this approach calls for use of location counters or labels,
necessitating an extension of the assertion language and making reconcilia-
tion with structured reasoning about programs difficult but not impossible.
We do not treat this approach here but refer the reader instead to the books
by Manna and Pnueli [1991,1995]. For dealing with fairness we use transfor-
mations based on explicit schedulers.

1.3 Structure of this Book

This book presents an approach to program verification based on Hoare-style
proof rules and on program transformations. It is organized around several
classes of sequential and concurrent programs. This structure enables us to
explain program verification in an incremental fashion and to have fine-tuned
verification methods for each class.

For the classes of programs we use the following terminology. In a se-
quential program the control resides at each moment in only one point. The
simplest type of sequential program is the deterministic program, where at
each moment the instruction to be executed next is uniquely determined. In a
concurrent program the control can reside at the same time at several control
points. Usually, the components of a concurrent program have to exchange
some information in order to achieve a certain common goal. This exchange is
known as communication. Depending on the mode of communication, we dis-
tinguish two types of concurrent programs: parallel programs and distributed
programs. In a parallel program the components communicate by means of
shared variables. The concurrent programs discussed in Section 1.1 are of this
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type. Distributed programs are concurrent programs with disjoint components
that communicate by explicit message passing.

For each class of programs considered in this book the presentation pro-
ceeds in a uniform way. We start with its syntax and then present an op-
erational semantics in the style of Hennessy and Plotkin [1979] and Plotkin
[1981,2004]. Next, we introduce Hoare-style proof rules allowing us to verify
the partial and total correctness of programs. Intuitively, partial correctness
means delivering correct results; total correctness additionally guarantees ter-
mination. Soundness of proposed proof systems is shown on the basis of the
program semantics. Throughout this book correctness proofs are presented
in the form of proof outlines as proposed by Owicki and Gries [1976a]. Case
studies provide extensive examples of program verification with the proposed
proof systems. For some program classes additional topics are discussed, for
example, completeness of the proof systems or program transformations into
other classes of programs. Each of the subsequent chapters ends with a series
of exercises and bibliographic remarks.

In Chapter 2 we explain the basic notions used in this book to describe
syntax, semantics and proof rules of the various program classes.

In Chapter 3 we study a simple class of deterministic programs, usu-
ally called while programs. These programs form the backbone for all other
program classes studied in this book. The verification method explained in
this chapter relies on the use of invariants and bound functions, and is a pre-
requisite for all subsequent chapters. We also deal with completeness of the
proposed proof systems. Finally, we discuss Dijkstra’s approach [1976] to a
systematic program development. It is based on reusing the proof rules in a
suitable way.

In Chapter 4 we extend the class of programs studied in Chapter 3 by
recursive procedures without parameters. Verifying such recursive programs
makes use of proofs from assumptions (about recursive procedure calls) that
are discharges later on (when the procedure body is considered).

In Chapter 5 this class is extended by call-by-value parameters of the
recursive procedures. Semantically, this necessitates the concept of a stack for
storing the values of the actual parameters of recursively called procedures.
We capture this concept by using a block statement and an appropriate
semantic transition rule that models the desired stack behavior implicitly.

In Chapter 6 object-oriented programs are studied in a minimal setting
where we focus on the following main characteristics of objects: objects pos-
sess (and encapsulate) their own local variables, objects interact via method
calls, and objects can be dynamically created.

In Chapter 7 we study the simplest form of parallel programs, so-called
disjoint parallel programs. “Disjoint” means that component programs have
only reading access to shared variables. As first noted in Hoare [1975], this
restriction leads to a very simple verification rule. Disjoint parallel programs
provide a good starting point for understanding general parallel programs



1.3 Structure of this Book 15

considered in Chapters 8 and 9, as well as distributed programs studied in
Chapter 11.

In Chapter 8 we study parallel programs that permit unrestricted use of
shared variables. The semantics of such parallel programs depends on which
parts of the components are considered atomic, that is, not interruptable by
the execution of other components. Verification of such programs is based on
the test of interference freedom due to Owicki and Gries [1976a]. In general,
this test is very laborious. However, we also present program transformations
due to Lipton [1975] allowing us to enlarge the atomic regions within the
component programs and thus reduce the number of interference tests.

In Chapter 9 we add to the programs of Chapter 8 a programming con-
struct for synchronization. Since the execution of these programs can now
end in a deadlock, their verification also includes a test of deadlock freedom.
As typical examples of parallel programs with shared variables and synchro-
nization, we consider solutions to the producer/consumer problem and the
mutual exclusion problem, which we prove to be correct.

In Chapter 10 we return to sequential programs but this time to
nondeterministic ones in the form of guarded commands due to Dijkstra
[1975,1976]. These programs can be seen as a stepping stone towards dis-
tributed programs considered in Chapter 11. We extend here Dijkstra’s ap-
proach to program development to the guarded commands language, the
class of programs for which this method was originally proposed. Finally,
we explain how parallel programs can be transformed into equivalent non-
deterministic ones although at the price of introducing additional control
variables.

In Chapter 11 we study a class of distributed programs that is a subset of
Communicating Sequential Processes (CSP) of Hoare [1978,1985]. CSP is the
kernel of the programming language OCCAM, see INMOS [1984], developed
for programming distributed transputer systems. We show that programs in
this subset can be transformed into semantically equivalent nondeterministic
programs without extra control variables. Based on this program transforma-
tion we develop proof techniques for distributed programs due to Apt [1986].

Finally, in Chapter 12 we consider the issue of fairness. For the sake
of simplicity we limit ourselves to the study of fairness for nondeterministic
programs, as studied in Chapter 10. Our approach, due to Apt and Olderog
[1983], again employs program transformations. More specifically, the proof
rule allowing us to deal with nondeterministic programs under the assumption
of fairness is developed by means of a program transformation that reduces
fair nondeterminism to ordinary nondeterminism.
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1.4 Automating Program Verification

In this book we present program verification as an activity requiring insight
and calculation. It is meaningful to ask whether program verification cannot
be carried out automatically. Why not feed a program and its specification
into a computer and wait for an answer? Unfortunately, the theory of com-
putability tells us that fully automatic verification of program properties is
in general an undecidable problem, and therefore impossible to implement.
Nevertheless, automating program verification is a topic of intense research.

First of all, for the special case of finite-state systems represented by pro-
grams that manipulate only variables ranging over finite data types, fully
automatic program verification is indeed possible. Queille and Sifakis [1981]
and Emerson and Clarke [1982] were the first to develop tools that auto-
matically check whether such programs satisfy specifications written in an
assertion language based on temporal logic. In the terminology of logic it
is checked whether the program is a model of the specification. Hence this
approach is called model checking. Essentially, model checking rests on al-
grorithms for exploring the reachable state space of a program. For further
details we refer to the books by Clarke, Grumberg, and Peled [1999], and
by Baier and Katoen [2008]. The book edited by Grumberg and Veith [2008]
surveys the achievements of model checking in the past 25 years.

The current problems in model checking lie in the so-called state space
explosion that occurs if many sequential components with finite state spaces
are composed in a concurrent program. Moreover, model checking is also
considering infinite-state systems, for instance represented by programs where
some variables range over infinite data types. One line of attack is here to
apply the concept of abstract interpretation due to Cousot and Cousot [1977a]
in order to reduce the original problem to a size where it can be automatically
solved. Then of course the question is whether the answer for the abstract
system implies the corresponding answer for the concrete system. To solve
this question the approach of abstraction refinement is often pursued whereby
too coarse abstractions are successively refined, see Clarke et al. [2003] and
Ball et al. [2002].

Related to model checking is the approach of program analysis that aims
at verifying restricted program properties automatically, for instance whether
a variable has a certain value at a given control point, see Nielson, Nielson
and Hankin [2004]. Program analysis employs static techniques for computing
reliable approximate information about the dynamic behavior of programs.
For example, shape analysis is used to establish properties of programs with
pointer structures, see Sagiv, Reps and Wilhelm [2002].

Another attempt to conquer the problem of state space explosion solution
is to combine automatic program verification with the application of proof
rules controlled by a human user —see for example Burch et al. [1992] and
Bouajjani et al. [1992]. This shows that even in the context of automatic



1.5 Assertional Methods in Practice 17

program verification a good knowledge of axiomatic verification techniques
as explained in this book is of importance.

A second, more general approach to automation is deductive verification.
It attempts to verify programs by proofs carried out by means of interactive
theorem provers instead of state space exploration and thus does not need
finite-state abstractions. Deductive verification automates the axiomatic ap-
proach to program verification presented in this book. Well-known are the
provers Isabelle/HOL, see Nipkow, Paulson and Wenzel [2002], and PVS, see
Owre and Shankar [2003], both based on higher-order logic. To apply these
provers to program verification both the program semantics and the proof
systems are embedded into higher-order logic and then suitable tactics are
formalized to reduce the amount of human interaction in the application of
the proof rules. As far as possible decision procedures are invoked to check
automatically logical implications needed in the premises of the proof rules.

Other theorem provers are based on dynamic logic, see Harel, Kozen
and Tiuryn [2000], which extends Hoare’s logic for sequential programs by
modal operators and is closed under logical operators. We mention here the
provers KeY that is used to the verification of object-oriented software written
in Java, see the book edited by Beckert, Hähnle and Schmitt [2007], KIV
(Karlsruhe Interactive Verifier, see Balser et al. [2000]), and VSE (Verification
Support Environment, see Stephan et al. [2005]).

1.5 Assertional Methods in Practice

To what extent do the methods of program verification influence today’s
practice of correct software construction? Hoare [1996] noted that current
programming paradigms build to a large extent on research that started 20
years ago. For example, we can observe that the notion of an assertion and
the corresponding programming methods appeared in practice only in recent
years.

Meyer [1997] introduced the paradigm of design by contract for the object-
oriented programming language Eiffel. A contract is a specification in the
form of assertions (class invariants and pre- and postconditions for each
method). The contract is agreed upon before an implementation is devel-
oped that satisfies this contract.

Design by contract has been carried over to the object-oriented program-
ming language Java by Leavens et al. [2005]. The contracts are written in
the Java Modeling Language JML, which allows the user to specify so-called
rich interfaces of classes and methods that are not yet implemented. Besides
assertions, JML also incorporates the concept of abstract data specified with
the help of so-called model variables that have to be realized by the imple-
mentation using data refinement.
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Checking whether an implementation (a program) satisfies a contract is
done either by formal verification using proof rules (as outlined above) or —in
a limited way— at runtime. The second approach requires that the assertions
in the contracts are Boolean expressions. Then during each particular run of
the implementation it is checked automatically whether along this run all
assertions of the contract are satisfied. If an assertion is encountered that is
not satisfied, a failure or exception is raised.

As an example of a successful application of verification techniques to
specific programming languages let us mention ESC/Java (Extended Static
Checker for Java) which supports the (semi-)automated verification of anno-
tated Java programs, see Flanagan et al. [2002]. Another example involves
Java Card, a subset of Java dedicated for the programming of Smart Cards
the programs of which are verified using interactive theorem provers, see van
den Berg, Jacobs and Poll [2001], and Beckert, Hähnle and Schmitt [2007].
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I N THIS CHAPTER we explain the basic concepts and notations used

throughout this book. We recommend to the reader to move now to

Chapter 3 and consult the individual sections of this chapter whenever

needed.

This chapter is organized as follows. In Section 2.1, we list the standard

mathematical notation for sets, tuples, relations, functions, sequences, strings,

proofs, induction and grammars.

Section 2.2 is needed to understand the syntax of the programs studied in

this book. For the operational semantics of all considered classes of programs,

Sections 2.3 and 2.4 are needed. For the verification of programs, in particular

for the definition of correctness formulas, Sections 2.5 and 2.6 on assertions

and Section 2.7 on substitution are needed. The introduction of proof systems
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for program verification assumes again knowledge of Section 2.4. Finally, to

show the soundness of these proof systems the Substitution Lemma intro-

duced in Section 2.8 is needed.
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2.1 Mathematical Notation

Sets

We assume the reader is familiar with the notion of a set, a collection of
elements. Finite sets may be specified by enumerating their elements between
curly brackets. For example, {true, false} denotes the set consisting of the
Boolean constants true and false. When enumerating the elements of a set,
we sometimes use “. . .” as a notation. For example, {1, . . ., n} denotes the
set consisting of the natural numbers 1, . . ., n where the upper bound n is a
natural number that is not further specified.

More generally, sets are specified by referring to some property of their
elements:

{x | P}

denotes the set consisting of all elements x that satisfy the property P . For
example,

{x | x is an integer and x is divisible by 2}

denotes the infinite set of all even integers.
We write a ∈ A to denote that a is an element of the set A, and b 6∈ A

to denote that b is not an element of A. Sometimes it is convenient to refer
to a given set A when defining a new set. We write

{x ∈ A | P}

as an abbreviation for {x | x ∈ A and P}.
Some sets have standard names: ∅ denotes the empty set, N denotes the

set of all natural numbers {0, 1, 2, 3, . . . }, and Z denotes the set of all integers
{. . . ,−1, 0, 1, 2, . . . }. Connected subsets of integers are called intervals. For
k, l ∈ Z the closed interval of integers between k and l is defined by

[k : l] = {i ∈ Z | k ≤ i ≤ l},

and the open interval by (k : l) = {i ∈ Z | k < i < l}. Half-open intervals
like (k : l] or [k : l) are defined analogously.

Recall that in a set one does not distinguish repetitions of elements. Thus
{true, false} and {true, false, true} are the same set. Similarly, the order
of elements is irrelevant. Thus {true, false} and {false, true} are the same
set. In general, two sets A and B are equal (i.e., the same) if and only if they
have the same elements; in symbols: A = B.

Let A and B be sets. Then A ⊆ B (and B ⊇ A) denotes that A is a subset
of B, A ∩ B denotes the intersection of A and B, A ∪ B the union of A and
B, and A − B the set difference of A and B. In other words,

A ⊆ B if a ∈ B for every a ∈ A,
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A ∩ B = {a | a ∈ A and b ∈ B},
A ∪ B = {a | a ∈ A or b ∈ B},
A − B = {a | a ∈ A and b 6∈ B}.

Note that A = B if both A ⊆ B and A ⊇ B. A and B are disjoint if they
have no element in common, that is, if A ∩ B = ∅.

The definitions of intersection and union can be generalized to the case of
more than two sets. Let Ai be a set for every element i of some other set I.
Then

⋂

i∈I Ai = {a | a ∈ Ai for all i ∈ I},
⋃

i∈I Ai = {a | a ∈ Ai for some i ∈ I}.

For a finite set A, card A denotes the cardinality, or the number of elements,
of A. For a nonempty finite set A ⊆ Z let min A denote the minimum of all
integers in A. Finally, for a set A we define P(A) = {B | B ⊆ A}.

Tuples

In sets the repetition of elements and their order is irrelevant. If these things
matter, we use another way of grouping elements: ordered pairs and tuples.
For elements a and b, not necessarily distinct, (a, b) is an ordered pair or
simply pair. Then a and b are called the components of (a, b). By definition,
two pairs (a, b) and (c, d) are identical if and only if their first components
and their second components agree. In symbols: (a, b) = (c, d) if and only if
a = c and b = d. Sometimes we use angle brackets and write pairs as < a, b >.

More generally, let n be any natural number. Then if a1, . . ., an are any
n elements, not necessarily distinct, (a1, . . ., an) is an n-tuple. The element
ai, where i ∈ {1, . . . , n}, is called the i-th component of (a1, . . ., an) . An n-
tuple (a1, . . ., an) is equal to an m-tuple (b1, . . ., bm) if and only if n = m and
ai = bi for all i ∈ {1, . . . , n}. For example, the tuples (1,1), (1,1,1), ((1,1),1)
and (1,(1,1)) are all distinct. Note that 2-tuples are the same as pairs. As
border cases, we also obtain the 0-tuple, written as (), and 1-tuples (a1) for
any element a1.

The Cartesian product A × B of sets A and B consists of all pairs (a, b)
with a ∈ A and b ∈ B. The n-fold Cartesian product A1 × · · · × An of sets
A1, . . ., An consists of all n-tuples (a1, . . ., an) with ai ∈ Ai for i ∈ {1, . . . , n}.
If all the Ai are the same set A, the n-fold Cartesian product A× · · · ×A of
A with itself is also written as An.
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Relations

A binary relation R between sets A and B is a subset of the Cartesian product
A × B; that is, R ⊆ A × B. If A = B then R is called a relation on A. For
example,

{(a, 1), (b, 2), (c, 2)}

is a binary relation between {a, b, c} and {1, 2}. More generally, for any natu-
ral number n an n-ary relation R between A1, . . ., An is a subset of the n-fold
Cartesian product A1 × · · · ×An; that is, R ⊆ A1 × · · · ×An. Note that 2-ary
relations are the same as binary relations. Instead of 1-ary and 3-ary relations
one usually talks of unary and ternary relations.

Consider a relation R on a set A. R is called reflexive if (a, a) ∈ R for
all a ∈ A; it is called irreflexive if (a, a) 6∈ R for all a ∈ A. R is called
symmetric if for all a, b ∈ A whenever (a, b) ∈ R then also (b, a) ∈ R; it is
called antisymmetric if for all a, b ∈ A whenever (a, b) ∈ R and (b, a) ∈ R
then a = b. R is called transitive if for all a, b, c ∈ A whenever (a, b) ∈ R and
(b, c) ∈ R then also (a, c) ∈ R.

The transitive, reflexive closure R∗ of a relation R on a set A is the small-
est transitive and reflexive relation on A that contains R as a subset. The
relational composition R1 ◦ R2 of relations R1 and R2 on a set A is defined
as follows:

R1 ◦ R2 = {(a, c) | there exists b ∈ A with (a, b) ∈ R1 and (b, c) ∈ R2}.

For any natural number n the n-fold relational composition Rn of a relation
R on a set A is defined inductively as follows:

R0 = {(a, a) | a ∈ A},
Rn+1 = Rn ◦ R.

Note that

R∗ = ∪ n∈N Rn.

Membership of pairs in a binary relation R is mostly written in infix no-
tation, so instead of (a, b) ∈ R one usually writes aR b.

Any binary relation R ⊆ A × B has an inverse R−1 ⊆ B × A defined as
follows:

b R−1a if aR b.

Functions

Let A and B be sets. A function or mapping from A to B is a binary relation
f between A and B with the following special property: for each element
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a ∈ A there is exactly one element b ∈ B with afb. Mostly we use prefix
notation for function application and write f(a) = b instead of afb. For some
functions, however, we use postfix notation and write af = b. An example is
substitution as defined in Section 2.7. In both cases b is called the value of f
applied to the argument a. To indicate that f is a function from A to B we
write

f : A → B.

The set A is called the domain of f and the set B the co-domain of f .
Consider a function f : A → B and some set X ⊆ A. Then the restriction

of f to X is denoted by f [X] and defined as the intersection of f (which is a
subset of A × B) with X × B:

f [X] = f ∩ (X × B).

We are sometimes interested in functions with special properties. A function
f : A → B is called one-to-one or injective if f(a1) 6= f(a2) for any two
distinct elements a1, a2 ∈ A; it is called onto or surjective if for every element
b ∈ B there exists an element a ∈ A with f(a) = b; it is called bijective or a
bijection from A onto B if it is both injective and surjective.

Consider a function whose domain is a Cartesian product, say f : A1 ×
· · · × An → B. Then it is customary to drop one pair of parentheses when
applying f to an element (a1, . . ., an) ∈ A1 × · · · × An. That is, we write

f(a1, . . ., an)

for the value of f at (a1, . . ., an) rather than f((a1, . . ., an)). We also say that
f is an n-ary function. If f(a1, . . ., an) = b then b is called the value of f
when applied to the arguments a1, . . ., an.

Consider a function whose domain and co-domain coincide, say f : A → A.
An element a ∈ A is called a fixed point of f if f(a) = a.

Sequences

In the following let A be a set. A sequence of elements from A of length n ≥ 0
is a function f : {1, . . ., n}→ A. We write a sequence f by listing the values
of f without any sort of punctuation in the order of ascending arguments,
that is, as

a1. . . an,

where a1 = f(1), . . ., an = f(n). Then ai with i ∈ {1, . . . , n} is referred to as
the i-th element in the sequence a1. . .an. A finite sequence is a sequence of
any length n ≥ 0. A sequence of length 0 is called the empty sequence and is
usually denoted by ε.
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We also allow (countably) infinite sequences. An infinite sequence of el-
ements from A is a function ξ : N → A. To exhibit the general form of an
infinite sequence ξ we typically write

ξ : a0 a1 a2. . .

if ai = f(i) for all i ∈ N. Then i is also called an index of the element ai.
Given any index i, the finite sequence a0. . . ai is called a prefix of ξ and the
infinite sequence ai ai+1. . . is called a suffix of ξ. Prefixes and suffixes of finite
sequences are defined similarly.

Consider now relations R1, R2, . . . on A. For any finite sequence a0. . .an

of elements from A with

a0 R1 a1, a1 R2 a2, . . ., an−1 Rn an

we write a finite chain

a0 R1 a1 R2 a2. . .an−1 Rn an.

For example, using the relations = and ≤ on Z, we may write

a0 = a1 ≤ a2 ≤ a3 = a4.

We apply this notation also to infinite sequences. Thus for any infinite se-
quence a0 a1 a2. . . of elements from A with

a0 R1 a1, a1 R2 a2, a2 R3 a3, . . .

we write an infinite chain

a0 R1 a1 R2 a2 R3 a3 . . . .

In this book the computations of programs are described using the chain
notation.

Strings

A set of symbols is often called an alphabet. A string over an alphabet A is
a finite sequence of symbols from A. For example, 1+2 is a string over the
alphabet {1, 2,+}. The syntactic objects considered in this book are strings.
We introduce several classes of strings: expressions, assertions, programs and
correctness formulas.

We write ≡ for the syntactic identity of strings. For example, 1+2 ≡ 1+2
but not 1 + 2 ≡ 2 + 1. The symbol = is used for the “semantic equality” of
objects. For example, if + denotes integer addition then 1+2 = 2+1.



26 2 Preliminaries

The concatenation of strings s1 and s2 yields the string s1 s2 formed by
first writing s1 and then s2, without intervening space. For example, the
concatenation of 1+ and 2+0 yields 1+2+0. A string t is called a substring
of a string s if there exist strings s1 and s2 such that s ≡ s1ts2. Since s1 and
s2 may be empty, s itself is a substring of s.

Note that there can be several occurrences of the same substring in a given
string s. For example, in the string s ≡ 1 + 1 + 1 there are two occurrences
of the substring 1+ and three occurrences of the substring 1.

Proofs

Mathematical proofs are often chains of equalities between expressions. We
present such chains in a special format (see, for example, Dijkstra and
Scholten [1990]):

expression 1

= {explanation why expression 1 = expression 2}

expression 2

.

.

.

expression n − 1

= {explanation why expression n − 1 = expression n}

expression n.

An analogous format is used for other relations between assertions or ex-
pressions, such as syntactic identity ≡ of strings, inclusion ⊆ of sets, and
implications or equivalences of assertions. Obvious explanations are some-
times omitted.

Following Halmos [1985] (cf. p. 403) we use the symbol iff as an abbre-
viation for if and only if and the symbol ¤ to denote the end of a proof, a
definition or an example.

For the conciseness of mathematical statements we sometimes use the
quantifier symbols ∃ and ∀ for, respectively, there exists and for all. The
formal definition of syntax and semantics of these quantifiers appears in Sec-
tions 2.5 and 2.6.
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Induction

In this book we often use inductive definitions and proofs. We assume that
the reader is familiar with the induction principle for natural numbers. This
principle states that in order to prove a property P for all n ∈ N, it suffices
to proceed by induction on n, organizing the proof as follows:

• Induction basis. Prove that P holds for n = 0.
• Induction step. Prove that P holds for n+1 from the induction hypothesis

that P holds for n.

We can also use this induction principle to justify inductive definitions
based on natural numbers. For example, consider once more the inductive
definition of the n-fold relational composition Rn of a relation R on a set A.
The implicit claim of this definition is: Rn is a well-defined relation on A for
all n ∈ N. The proof is by induction on n and is straightforward.

A more interesting example is the following.

Example 2.1. The inclusion Rn ⊆ R∗ holds for all n ∈ N. The proof is by
induction on n.

• Induction basis. By definition, R0 = {(a, a) | a ∈ A}. Since R∗ is reflexive,
R0 ⊆ R∗ follows.

• Induction step. Using the proof format explained earlier, we argue as fol-
lows:

Rn+1

= {definition of Rn+1}

Rn ◦ R

⊆ {induction hypothesis, definition of ◦}

R∗ ◦ R

⊆ {definition of R∗}

R∗ ◦ R∗

⊆ {transitivity of R∗}

R∗.

Thus Rn+1 ⊆ R∗. ⊓⊔

The induction principle for natural numbers is based on the fact that the
natural numbers can be constructed by beginning with the number 0 and
repeatedly adding 1. By allowing more general construction methods, one
obtains the principle of structural induction, enabling the use of more than
one case at the induction basis and at the induction step.

For example, consider the set of (fully bracketed) arithmetic expressions
with constants 0 and 1, the variable v, and the operator symbols + and ·. This
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is the smallest set of strings over the alphabet {0, 1, v,+, ·, (, )} satisfying the
following inductive definition:

• Induction basis. 0,1 and v are arithmetical expressions.
• Induction step. If e1 and e2 are arithmetical expressions, then (e1 + e2)

and (e1 · e2) are also arithmetical expressions.

Thus there are here three cases at the induction basis and two at the induction
step.

In this book we give a number of such inductive definitions; usually the
keywords “induction basis” and “induction step” are dropped. Inductive def-
initions form the basis for inductive proofs.

Example 2.2. For an arithmetic expression e as above let c(e) denote the
number of occurrences of constants and variables in e, and o(e) denote the
number of occurrences of operator symbols in e. For instance, e ≡ ((0 + v) +
(v · 1)) yields c(e) = 4 and o(e) = 3. We claim that

c(e) = 1 + o(e)

holds for all arithmetic expressions e.
The proof is by induction on the structure of e.

• Induction basis. If e ≡ 0 or e ≡ 1 or e ≡ v then c(e) = 1 and o(e) = 0.
Thus c(e) = 1 + o(e).

• Induction step. Suppose that e ≡ (e1 + e2). Then

c(e)

= {definition of e}

c((e1 + e2))

= {definition of c}

c(e1) + c(e2)

= {induction hypothesis}

1 + o(e1) + 1 + o(e2)

= {definition of o}

1 + o((e1 + e2))

= {definition of e}

1 + o(e).

The case when e ≡ (e1 · e2) is handled analogously. ⊓⊔

These remarks on induction are sufficient for the purposes of our book.
A more detailed account on induction can be found, for example, in Loeckx
and Sieber [1987].
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Grammars

Often the presentation of inductive definitions of sets of strings can be made
more concise by using context-free grammars in the so-called Backus-Naur
Form (known as BNF).

For example, we can define an arithmetic expression as a string of symbols
0, 1, v,+, ·, (, ) generated by the following grammar:

e ::= 0 | 1 | v | (e1 + e2) | (e1 · e2).

Here the letters e, e1, e2 are understood to range over arithmetic expressions.
The metasymbol ::= reads as “is of the form” and the metasymbol | reads as
“or.” Thus the above definition states that an arithmetic expression e is of
the form 0 or 1 or v or (e1 + e2) or (e1 · e2) where e1 and e2 themselves are
arithmetic expressions.

In this book we use grammars to define the syntax of several classes of
programs.

2.2 Typed Expressions

Typed expressions occur in programs on the right-hand sides of assignments
and as subscripts of array variables. To define them we first define the types
that are used.

Types

We assume at least two basic types:

• integer,
• Boolean.

Further on, for each n ≥ 1 we consider the following higher types:

• T1 × . . .×Tn → T , where T1, . . ., Tn, T are basic types. Here T1, . . ., Tn are
called argument types and T the value type.

Occasionally other basic types such as character are used. A type should be
viewed as a name, or a notation for the intended set of values. Type integer
denotes the set of all integers, type Boolean the set {true, false} and a type
T1 × . . . × Tn → T the set of all functions from the Cartesian product of the
sets denoted by T1, . . ., Tn to the set denoted by T .
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Variables

We distinguish two sorts of variables:

• simple variables,
• array variables or just arrays.

Simple variables are of a basic type. Simple variables of type integer are
called integer variables and are usually denoted by i, j, k, x, y, z. Simple vari-
ables of type Boolean are called Boolean variables. In programs, simple vari-
ables are usually denoted by more suggestive names such as turn or found.

Array variables are of a higher type, that is, denote a function from a
certain argument type into a value type. We typically use letters a, b, c for
array variables. If a is an array of type integer → T then a denotes a function
from the integers into the value set denoted by T . Then for any k, l with
k ≤ l the section a[k : l] stands for the restriction of a to the interval [k : l] =
{i | k ≤ i ≤ l}. The number of arguments of the higher type associated with
the array a is called its dimension.

We denote the set of all simple and array variables by Var.

Constants

The value of variables can be changed during execution of a program, whereas
the value of constants remains fixed. We distinguish two sorts of constants:

• constants of basic type,
• constants of higher type.

Among the constants of basic type we distinguish integer constants and
Boolean constants. We assume infinitely many integer constants: 0,-1,1, -
2,2,. . . and two Boolean constants: true, false.

Among the constants of a higher type T1× . . .×Tn → T we distinguish two
kinds. When the value type T is Boolean, the constant is called a relation
symbol; otherwise the constant is called a function symbol; n is called the
arity of the constant.

We do not wish to be overly specific, but we introduce at least the following
function and relation symbols:

• | | of type integer → integer,
• +,−, ·,min,max, div,mod of type integer × integer → integer,
• =int, <, divides of type integer × integer → Boolean,
• int of type Boolean → integer,
• ¬ of type Boolean → Boolean,
• =Bool, ∨ , ∧ , → , ↔ of type Boolean × Boolean → Boolean.
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In the sequel we drop the subscripts when using =, since from the context
it is always clear which interpretation is meant. The value of each of the above
constants is as expected and is explained when discussing the semantics of
expressions in Section 2.3.

The relation symbols ¬ (negation), ∨ (disjunction), ∧ (conjunction),
→ (implication) and ↔ (equivalence) are usually called connectives.

This definition is slightly unusual in that we classify the nonlogical symbols
of Peano arithmetic and the connectives as constants. However, their meaning
is fixed and consequently it is natural to view them as constants. This allows
us to define concisely expressions in the next section.

Expressions

Out of typed variables and constants we construct typed expressions or, in
short, expressions. We allow here only expressions of a basic type. Thus we
distinguish integer expressions, usually denoted by letters s, t and Boolean
expressions, usually denoted by the letter B. Expressions are defined by in-
duction as follows:

• a simple variable of type T is an expression of type T ,
• a constant of a basic type T is an expression of type T ,
• if s1, . . ., sn are expressions of type T1, . . ., Tn, respectively, and op is a

constant of type T1 × . . .× Tn → T , then op(s1, . . ., sn) is an expression of
type T ,

• if s1, . . ., sn are expressions of type T1, . . ., Tn, respectively, and a is an
array of type T1 × . . .×Tn → T , then a[s1, . . ., sn] is an expression of type
T ,

• if B is a Boolean expression and s1 and s2 are expressions of type T , then
if B then s1 else s2 fi is an expression of type T .

For binary constants op we mostly use the infix notation

(s1 op s2)

instead of prefix notation op(s1, s2). For the unary constant op ≡ ¬ it is
customary to drop brackets around the argument, that is, to write ¬B instead
of ¬(B). In general, brackets ( and ) can be omitted if this does not lead to any
ambiguities. To resolve remaining ambiguities, it is customary to introduce a
binding order among the binary constants. In the following list the constants
in each line bind more strongly than those in the next line:

· , mod and div,

+ and −,
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= , < and divides,

∨ and ∧ ,

→ and ↔ .

Thus binary function symbols bind more strongly than binary relation sym-
bols. Symbols of stronger binding power are bracketed first. For example, the
expression x + y mod z is interpreted as x + (y mod z) and the assertion
p ∧ q → r is interpreted as (p ∧ q) → r.

Example 2.3. Suppose that a is an array of type integer × Boolean →
Boolean, x an integer variable, found a Boolean variable and B a Boolean
expression. Then B ∨ a[x + 1, found] is a Boolean expression and so is a[2 ·
x, a[x,¬found]], whereas int(a[x,¬B]) is an integer expression. In contrast,
a[found, found] is not an expression and neither is a[x, x]. ⊓⊔

By a subexpression of an expression s we mean a substring of s that is
again an expression. By var(s) for an expression s we denote the set of all
simple and array variables that occur in s.

Subscripted Variables

Expressions of the form a[s1, . . ., sn] are called subscripted variables. Sub-
scripted variables are somewhat unusual objects from the point of view of
logic. They are called variables because, together with simple variables, they
can be assigned a value in programs by means of an assignment statement,
which is discussed in the next chapter. Also, they can be substituted for (see
Section 2.7). However, they cannot be quantified over (see Section 2.5) and
their value cannot be fixed in a direct way (see Section 2.3). Assignments to
a subscripted variable a[s1, . . ., sn] model a selected update of the array a at
the argument tuple [s1, . . ., sn].

In the following simple and subscripted variables are usually denoted by
the letters u, v.

2.3 Semantics of Expressions

In general a semantics is a mapping assigning to each element of a syntactic
domain some value drawn from a semantic domain. In this section we explain
the semantics of expressions.
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Fixed Structure

From logic we need the notion of a structure: this is a pair S = (D, I) where

• D is a nonempty set of data or values called a semantic domain. We use
the letter d as typical element of D.

• I is an interpretation of the constants, that is, a mapping that assigns to
each constant c a value I(c) from D. We say that the constant c denotes
the value I(c).

In contrast to general studies in logic we stipulate a fixed structure S through-
out this book. Its semantic domain D is the disjoint union

D =
⋃

T is a type

DT ,

where for each T the corresponding semantic domain DT is defined induc-
tively as follows:

• Dinteger = Z, the set of integers,
• DBoolean = {true, false}, the set of Boolean values,
• DT1×. . .×Tn → T = DT1

× . . .×DTn
→DT , the set of all functions from the

Cartesian product of the sets DT1
, . . .,DTn

into the set DT .

The interpretation I is defined as follows: each constant c of base type denotes
itself, that is, I(c) = c; each constant op of higher type denotes a fixed
function I(op).

For example, the integer constant 1 denotes the integer number 1 and the
Boolean constant true denotes the Boolean value true. The unary constant
| | denotes the absolute value function. The unary constant ¬ denotes the
negation of Boolean values:

¬(true) = false and ¬(false) = true.

The binary constants div and mod are written in infix form and denote integer
division and remainder defined uniquely by the following requirements:

(x div y) · y + x mod y = x,

0 ≤ x mod y < y for y > 0,

y < x mod y ≤ 0 for y < 0.

To ensure that these functions are total we additionally stipulate

x div 0 = 0 and x mod 0 = x

for the special case of y = 0.
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The binary constant divides is defined by

x divides y iff y mod x = 0.

The unary constant int denotes the function with

int(true) = 1 and int(false) = 0.

States

In contrast to constants, the value of variables is not fixed but given through
so-called proper states. A proper state is a mapping that assigns to every
simple and array variable of type T a value in the domain DT . We use the
letter Σ to denote the set of proper states.

Example 2.4. Let a be an array of type integer × Boolean → Boolean
and x be an integer variable. Then each state σ assigns to a a function

σ(a) : {...,−1, 0, 1, ...} × {true, false}→ {true, false}

and to x a value from {...,−1, 0, 1, ...}. For example, σ(a)(5, true) ∈
{true, false} and σ(a)(σ(x), false) ∈ {true, false}. ⊓⊔

Later, in Section 2.6, we also use three error states representing abnormal
situations in a program execution: ⊥ denotes divergence of a program, fail
denotes a failure in an execution of a program and ∆ denotes a deadlock in an
execution of a program. These error states are just special symbols and not
mappings from variables to data values as proper states; they are introduced
in Chapters 3, 9 and 10, respectively.

By a state we mean a proper or an error state. States are denoted by the
letters σ, τ, ρ.

Let Z ⊆ V ar be a set of simple or array variables. Then we denote by
σ[Z] the restriction of a proper state σ to the variables occurring in Z. By
convention, for error states we define ⊥[Z] = ⊥, and similarly for ∆ and fail.
We say that two sets of states X and Y agree modulo Z, and write

X = Y mod Z,

if
{σ[Var − Z] | σ ∈ X} = {σ[Var − Z] | σ ∈ Y }.

By the above convention, X = Y mod Z implies the following for error
states: ⊥ ∈ X iff ⊥ ∈ Y , ∆ ∈ X iff ∆ ∈ Y and fail ∈ X iff fail ∈ Y . For
singleton sets X,Y , and Z we omit the brackets { and } around the singleton
element. For example, for proper states σ, τ and a simple variable x,



2.3 Semantics of Expressions 35

σ = τ mod x

states that σ and τ agree modulo x, i.e., for all simple and array variables
v ∈ V ar with v 6= x we have σ(v) = τ(v).

Definition of the Semantics

The semantics of an expression s of type T in the structure S is a mapping

S[[s]] : Σ →DT

which assigns to s a value S[[s]](σ) from DT depending on a given proper
state σ. This mapping is defined by induction on the structure of s:

• if s is a simple variable then

S[[s]](σ) = σ(s),

• if s is a constant of a basic type denoting the value d, then

S[[s]](σ) = d,

• if s ≡ op(s1, . . ., sn) for some constant op of higher type denoting a function
f then

S[[s]](σ) = f(S[[s1]](σ), . . .,S[[sn]](σ)),

• if s ≡ a[s1, . . ., sn] for some array variable a then

S[[s]](σ) = σ(a)(S[[s1]](σ), . . .,S[[sn]](σ)),

• if s ≡ if B then s1 else s2 fi for some Boolean expression B then

S[[s]](σ) =

{
S[[s1]](σ) if S[[B]](σ) = true,
S[[s2]](σ) if S[[B]](σ) = false,

• if s ≡ (s1) then
S[[s]](σ) = S[[s1]](σ).

Since S is fixed throughout this book, we abbreviate the standard notion
S[[s]](σ) from logic to σ(s). We extend this notation and apply states also to
lists of expressions: for a list s̄ = s1, . . . , sn of expressions σ(s̄) denotes the
list of values σ(s1), . . . , σ(sn).

Example 2.5.
(a) Let a be an array of type integer → integer. Then for any proper state
σ we have σ(1 + 1) = σ(1) + σ(1) = 1 + 1 = 2; so
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σ(a[1 + 1]) = σ(a)(σ(1 + 1)) = σ(a)(2) = σ(a[2]),

thus a[1 + 1] and a[2] have the same value in all proper states, as desired.
(b) Consider now a proper state σ with σ(x) = 1 and σ(a)(1) = 2. Then

σ(a[a[x]])

= {definition of σ(s)}

σ(a)(σ(a)(σ(x)))

= {σ(x) = 1, σ(a)(1) = 2}

σ(a)(2)

= σ(a[2])

and

σ(a[if x = 1 then 2 else b[x] fi])

= {definition of σ(s)}

σ(a)(σ(if x = 1 then 2 else b[x] fi))

= {σ(x) = 1, definition of σ(s)}

σ(a)(σ(2))

= σ(a[2]).
⊓⊔

Updates of States

For the semantics of assignments we need in the sequel the notion of an
update of a proper state σ, written as σ[u := d], where u is a simple or
subscripted variable of type T and d is an element of type T . As we shall see
in Chapter 3, the update σ[u := σ(t)] describes the values of the variables
after the assignment u := t has been executed in state σ. Formally, the update
σ[u := d] is again a proper state defined as follows:

• if u is a simple variable then

σ[u := d]

is the state that agrees with σ except for u where its value is d. Formally,
for each simple or array variable v

σ[u := d](v) =

{
d if u ≡ v,
σ(v) otherwise.

• if u is a subscripted variable, say u ≡ a[t1, . . ., tn], then
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σ[u := d]

is the state that agrees with σ except for the variable a where the value
σ(a)(σ(t1), . . ., σ(tn)) is changed to d. Formally, for each simple or array
variable v

σ[u := d](v) = σ(v) if a 6≡ v

and otherwise for a and argument values d1, . . ., dn

σ[u := d](a)(d1, . . ., dn) =
{

d if di = σ(ti) for i ∈ {1, . . . , n},
σ(a)(d1, . . ., dn) otherwise.

Thus the effect of σ[u := d] is a selected update of the array variable a at
the current values of the argument tuple t1, . . ., tn.

We extend the definition of update to error states by putting ⊥[u := d] = ⊥,
∆[u := d] = ∆ and fail[u := d] = fail.

Example 2.6. Let x be an integer variable and σ a proper state.
(i) Then

σ[x := 1](x) = 1,

for any simple variable y 6≡ x

σ[x := 1](y) = σ(y),

and for any array a of type T1× . . .×Tn → T and di ∈ DTi
for i ∈ {1, . . . , n},

σ[x := 1](a)(d1, . . ., dn) = σ(a)(d1, . . ., dn).

(ii) Let a be an array of type integer → integer. Suppose that σ(x) = 3.
Then for all simple variables y

σ[a[x + 1] := 2](y) = σ(y),

σ[a[x + 1] := 2](a)(4) = 2,

for all integers k 6= 4

σ[a[x + 1] := 2](a)(k) = σ(a)(k),

and for any array variable b of type T1 × . . . × Tn → T different from a and
di ∈ DTi

for i ∈ {1, . . . , n},

σ[a[x + 1] := 2](b)(d1, . . ., dn) = σ(b)(d1, . . ., dn). ⊓⊔

To define the semantics of parallel assignments, we need the notion of
simultaneous update of a list of simple variables. Let x̄ = x1, . . . , xn be a
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list of distinct simple variables of types T1, . . . , Tn and d̄ = d1, . . . , dn a
corresponding list of elements of types T1, . . . , Tn. Then we define for an
arbitrary (proper or error) state

σ[x̄ := d̄] = σ[x1 := d1] . . . [xn := dn].

Thus we reduce the simultaneous update to a series of simple updates. This
captures the intended meaning because the variables x1, . . . , xn are distinct.

2.4 Formal Proof Systems

Our main interest here is in verifying programs. To this end we investigate so-
called correctness formulas. To show that a given program satisfies a certain
correctness formula we need proof systems for correctness formulas. However,
we need proof systems even before talking about program correctness, namely
when defining the operational semantics of the programs. Therefore we now
briefly introduce the concept of a proof system as it is known in logic.

A proof system or a calculus P over a set Φ of formulas is a finite set of
axiom schemes and proof rules. An axiom scheme A is a decidable subset of Φ,
that is, A ⊆ Φ. To describe axiom schemes we use the standard set-theoretic
notation A = { ϕ | where “. . .”} usually written as

A : ϕ where “. . .”.

Here ϕ stands for formulas satisfying the decidable applicability condition
“. . .” of A. The formulas ϕ of A are called axioms and are considered as
given facts. Often the axiom scheme is itself called an “axiom” of the proof
system.

With the help of proof rules further facts can be deduced from given
formulas. A proof rule R is a decidable k + 1-ary relation on the set
Φ of formulas, that is, R ⊆ Φk+1. Instead of the set-theoretic notation
R = { (ϕ1, ..., ϕk, ϕ) | where “. . .”} a proof rule is usually written as

R :
ϕ1, . . ., ϕk

ϕ
where “. . .”.

Here ϕ1, . . ., ϕk and ϕ stand for the formulas satisfying the decidable appli-
cability condition “. . .” of R. Intuitively, such a proof rule says that from
ϕ1, . . ., ϕk the formula ϕ can be deduced if the applicability condition “. . .”
holds. The formulas ϕ1, . . ., ϕk are called the premises and the formula ϕ is
called the conclusion of the proof rule.

A proof of a formula ϕ from a set A of formulas in a proof system P is a
finite sequence
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ϕ1

.

.

.
ϕn

of formulas with ϕ = ϕn such that each formula ϕi with i ∈ {1, . . . , n}

• is either an element of the set A or it
• is an axiom of P or it
• can be obtained by an application of a proof rule R of P , that is, there

are formulas ϕi1 , . . . , ϕik
with i1, . . . , ik < i in the sequence such that

(ϕi1 , . . . , ϕik
, ϕi) ∈ R.

The formulas in the set A are called assumptions of the proof. A should be
a decidable subset of Φ. Thus A can be seen as an additional axiom scheme
A ⊆ Φ that is used locally in a particular proof. Note that the first formula
ϕ1 in each proof is either an assumption from the set A or an axiom of P .
The length n of the sequence is called the length of the proof.

We say that ϕ is provable from A in P if there exists a proof from A in P .
In that case we write

A ⊢P ϕ.

For a finite set of assumptions, A = {A1, . . . , An}, we drop the set brackets
and write A1, . . . , An ⊢P ϕ instead of {A1, . . . , An} ⊢P ϕ. If A = ∅ we simply
write

⊢P ϕ

instead of ∅ ⊢P . In that case we call the formula ϕ a theorem of the proof
system P .

2.5 Assertions

To prove properties about program executions we have to be able to describe
properties of states. To this end, we use formulas from predicate logic. In the
context of program verification these formulas are called assertions because
they are used to assert that certain conditions are true for states. Assertions
are usually denoted by letters p, q, r, and are defined, inductively, by the
following clauses:

• every Boolean expression is an assertion,
• if p, q are assertions, then ¬p, (p ∨ q), (p ∧ q), (p → q) and (p ↔ q) are also

assertions,
• if x is a variable and p an assertion, then ∃x : p and ∀x : p are also

assertions.
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The symbol ∃ is the existential quantifier and ∀ is the universal quantifier.
Thus in contrast to Boolean expressions, quantifiers can occur in assertions.
Note that quantifiers are allowed in front of both simple and array variables.

As in expressions the brackets ( and ) can be omitted in assertions if no
ambiguities arise. To this end we extend the binding order used for expressions
by stipulating that the connectives

→ and ↔ ,

bind stronger than
∃ and ∀.

For example, ∃x : p ↔ q ∧ r is interpreted as ∃x : (p ↔ (q ∧ r)). Also, we can
always delete the outer brackets.

Further savings on brackets can be achieved by assuming the right asso-
ciativity for the connectives ∧ , ∨ , → and ↔ , that is to say, by allowing
A ∧ (B ∧ C) to be written as A ∧ B ∧ C, and analogously for the remaining
binary connectives.

To simplify notation, we also use the following abbreviations:

n∧

i=1

pi abbreviates p1 ∧ ... ∧ pn

s ≤ t abbreviates s < t ∨ s = t

s ≤ t < u abbreviates s ≤ t ∧ t < u

s 6= t abbreviates ¬(s = t)

∃x, y : p abbreviates ∃x : ∃y : p

∀x, y : p abbreviates ∀x : ∃y : p

∃x ≤ t : p abbreviates ∃x : (x ≤ t ∧ p)

∀x ≤ t : p abbreviates ∀x : (x ≤ t → p)

∀x ∈ [s : t] : p abbreviates ∀x : (s ≤ x ≤ t → p)

We also use other abbreviations of this form which are obvious.
For lists s̄ = s1, . . . , sm and t̄ = t1, . . . , tn of expressions, we write

s̄ = t̄

if m = n and si = ti holds for i = 1, . . . , n. In particular, we write x̄ = ȳ for
lists x̄ and ȳ of simple variables.

The same variable can occur several times in a given assertion. For exam-
ple, the variable y occurs three times in

x > 0 ∧ y > 0 ∧ ∃y : x = 2 ∗ y.
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In logic one distinguishes different kinds of occurrences. By a bound occur-
rence of a simple variable x in an assertion p we mean an occurrence within a
subassertion of p of the form ∃x : r or ∀x : r. By a subassertion of an assertion
p we mean a substring of p that is again an assertion. An occurrence of a
simple variable in an assertion p is called free if it is not a bound one. In the
above example, the first occurrence of y is free and the other two are bound.

By var(p) we denote the set of all simple and array variables that occur
in an assertion p. By free(p) we denote the set of all free simple and array
variables that have a free occurrence (or occur free) in p.

2.6 Semantics of Assertions

The semantics of an assertion p in a structure S is a mapping

S[[p]] : Σ →{true, false}

that assigns to p a truth value S[[p]](σ) depending on a given proper state σ.
Since the structure S is fixed, we abbreviate the standard notation S[[p]](σ)
from logic by writing σ |= p instead of S[[p]](σ) = true.

When σ |= p holds, we say that σ satisfies p or that p holds in σ or that
σ is a p-state. This concept is defined by induction on the structure of p. We
put

• for Boolean expressions B

σ |= B, iff σ(B) = true,

• for negation

σ |= ¬p iff not σ |= p (written as σ 6|= p),

• for conjunction
σ |= p ∧ q, iff σ |= p and σ |= q,

• for disjunction
σ |= p ∨ q, iff σ |= p or σ |= q,

• for implication

σ |= p → q, iff σ |= p implies σ |= q,

• for equivalence

σ |= (p ↔ q), iff (σ |= p if and only if σ |= q),
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• for the universal quantifier applied to a simple or an array variable v of
type T

σ |= ∀v : p iff τ |= p for all proper states τ with σ = τ mod v ,

• for the existential quantifier applied to a simple or an array variable v of
type T

σ |= ∃v : p iff τ |= p for some proper state τ with σ = τ mod v ,

By the definition of mod, the states σ and τ agree on all variables except v.
For simple variables x we can use updates and determine τ = σ[x := d] for a
data value d in DT . See Exercise 2.6 for the precise relationship.

We also introduce the meaning of an assertion, written as [[p]], and defined
by

[[p]] = {σ | σ is a proper state and σ |= p}.

We say that an assertion p is true, or holds, if for all proper states σ we have
σ |= p, that is, if [[p]] = Σ. Given two assertions p and q, we say that p and q
are equivalent if p ↔ q is true.

For error states we define ⊥ 6|= p, ∆ 6|= p and fail 6|= p. Thus for all
assertions

⊥, ∆, fail 6∈ [[p]].

The following simple lemma summarizes the relevant properties of the mean-
ing of an assertion.

Lemma 2.1. (Meaning of Assertion)

(i) [[¬p]] = Σ − [[p]],
(ii) [[p ∨ q]] = [[p]] ∪ [[q]],
(iii) [[p ∧ q]] = [[p]] ∩ [[q]],
(iv) p → q is true iff [[p]] ⊆ [[q]],
(v) p ↔ q is true iff [[p]] = [[q]].

Proof. See Exercise 2.7. ⊓⊔

2.7 Substitution

To prove correctness properties about assignment statements, we need the
concept of substitution. A substitution of an expression t for a simple or
subscripted variable u is written as

[u := t]
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and denotes a function from expressions to expressions and from assertions
to assertions. First, we define the application of [u := t] to an expression s,
which is written in postfix notation. The result is an expression denoted by

s[u := t].

A substitution [u := t] describes the replacement of u by t. For example, we
have

• max(x, y)[x := x + 1] ≡ max(x + 1, y).

However, substitution is not so easy to define when subscripted variables are
involved. For example, we obtain

• max(a[1], y)[a[1] := 2] ≡ max(2, y),
• max(a[x], y)[a[1] := 2] ≡ if x = 1 then max(2, y) else max(a[x], y) fi.

In the second case it is checked whether the syntactically different subscripted
variables a[x] and a[1] are aliases of the same location. Then the substitution
of 2 for a[1] results in a[x] being replaced by 2, otherwise the substitution
has no effect. To determine whether a[x] and a[1] are aliases the definition
of substitution makes a case distinction on the subscripts of a (using the
conditional expression if x = 1 then . . . else . . . fi).

In general, in a given state σ the substituted expression s[u := t] should
describe the same value as the expression s evaluated in the updated state
σ[u := σ(t)], which arises after the assignment u := t has been executed in σ
(see Chapter 3). This semantic equivalence is made precise in the Substitution
Lemma 2.4 below.

The formal definition of the expression s[u := t] proceeds by induction on
the structure of s:

• if s ≡ x for some simple variable x then

s[u := t] ≡

{
t if s ≡ u
s otherwise,

• if s ≡ c for some constant c of basic type then

s[u := t] ≡ s,

• if s ≡ op(s1, . . ., sn) for some constant op of higher type then

s[u := t] ≡ op(s1[u := t], . . ., sn[u := t]),

• if s ≡ a[s1, . . ., sn] for some array a, and u is a simple variable or a sub-
scripted variable b[t1, . . ., tm] where a 6≡ b, then

s[u := t] ≡ a[s1[u := t], . . ., sn[u := t]],
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• if s ≡ a[s1, . . ., sn] for some array a and u ≡ a[t1, . . ., tn] then

s[u := t] ≡ if
∧n

i=1 si[u := t] = ti then t
else a[s1[u := t], . . ., sn[u := t]] fi,

• if s ≡ if B then s1 else s2 fi then

s[u := t] ≡ if B[u := t] then s1[u := t] else s2[u := t] fi.

Note that the definition of substitution does not take into account the infix
notation of binary constants op; so to apply substitution the infix notation
must first be replaced by the corresponding prefix notation.

The most complicated case in this inductive definition is the second
clause dealing with subscripted variables, where s ≡ a[s1, . . ., sn] and u ≡
a[t1, . . ., tn]. In that clause the conditional expression

if
∧n

i=1 si[u := t] = ti then . . . else . . . fi

checks whether, for any given proper state σ, the expression s ≡ a[s1, . . ., sn]
in the updated state σ[u := σ(t)] and the expression u ≡ a[t1, . . ., tn] in
the state σ are aliases. For this check the substitution [u := t] needs to
applied inductively to all subscripts s1, . . ., sn of a[s1, . . ., sn]. In case of an
alias s[u := t] yields t. Otherwise, the substitution is applied inductively to
the subscripts s1, . . ., sn of a[s1, . . ., sn].

The following lemma is an immediate consequence of the above definition
of s[u := t].

Lemma 2.2. (Identical Substitution) For all expressions s and t, all sim-
ple variables x and all subscripted variables a[t1, . . ., tn]

(i) s[x := t] ≡ s if s does not contain x,
(ii) s[a[t1, . . ., tn] := t] ≡ s if s does not contain a. ⊓⊔

The following example illustrates the application of substitution.

Example 2.7. Suppose that a and b are arrays of type integer → integer
and x is an integer variable. Then

a[b[x]][b[1] := 2]

≡ {definition of s[u := t] since a 6≡ b}

a[b[x][b[1] := 2]]

≡ {definition of s[u := t]}

a[if x[b[1] := 2] = 1 then 2 else b[x[b[1] := 2]] fi]

≡ {by the Identical Substitution Lemma 2.2 x[b[1] := 2] ≡ x}

a[if x = 1 then 2 else b[x] fi] ⊓⊔
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The application of substitutions [u := t] is now extended to assertions p.
The result is again an assertion denoted by

p[u := t].

The definition of p[u := t] is by induction on the structure on p:

• if p ≡ s for some Boolean expression s then

p[u := t] ≡ s[u := t]

by the previous definition for expressions,
• if p ≡ ¬q then

p[u := t] ≡ ¬(q[u := t]),

• if p ≡ q ∨ r then

p[u := t] ≡ q[u := t] ∨ r[u := t],

and similarly for the remaining binary connectives: ∧ , → and ↔ ,
• if p ≡ ∃x : q then

p[u := t] ≡ ∃y : q[x := y][u := t],

where y does not appear in p, t or u and is of the same type as x,
• if p ≡ ∀x : q then

p[u := t] ≡ ∀y : q[x := y][u := t],

where y does not appear in p, t or u and is of the same type as x.

In the clauses dealing with quantification, renaming the bound variable x
into a new variable y avoids possible clashes with free occurrences of x in t.
For example, we obtain

(∃x : z = 2 · x)[z := x + 1]

≡ ∃y : z = 2 · x[x := y][z := x + 1]

≡ ∃y : x + 1 = 2 · y.

Thus for assertions substitution is defined only up to a renaming of bound
variables.

Simultaneous Substitution

To prove correctness properties of parallel assignments, we need the concept
of simultaneous substitution. Let x̄ = x1, . . . , xn be a list of distinct simple
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variables of type T1, . . . , Tn and t̄ = t1, . . . , tn a corresponding list of expres-
sions of type T1, . . . , Tn. Then a simultaneous substitution of t̄ for x̄ is written
as

[x̄ := t̄]

and denotes a function from expressions to expressions and from assertions to
assertions. The application of [x̄ := t̄] to an expression s is written in postfix
notation. The result is an expression denoted by

s[x̄ := t̄]

and defined inductively over the structure of s. The definition proceeds anal-
ogously to that of a substitution for a single simple variable except that in
the base case we now have to select the right elements from the lists x̄ and t̄:

• if s ≡ x for some simple variable x then

s[x̄ := t̄] ≡

{
ti if x ≡ xi for some i ∈ {1, . . . , n}
s otherwise.

As an example of an inductive clause of the definition we state:

• if s ≡ op(s1, . . ., sn) for some constant op of higher type then

s[x̄ := t̄] ≡ op(s1[x̄ := t̄], . . ., sn[x̄ := t̄]).

Using these inductive clauses the substitution for each variable xi from the
list x̄ is pursued simultaneously. This is illustrated by the following example.

Example 2.8. We take s ≡ max(x, y) and calculate

max(x, y)[x, y := y + 1, x + 2]

≡ {op ≡ max in the inductive clause above}

max(x[x, y := y + 1, x + 2], y[x, y := y + 1, x + 2])

≡ {the base case shown above}

max(y + 1, x + 2).

Note that a sequential application of two single substitutions yields a different
result:

max(x, y)[x := y + 1][y := x + 2]

≡ max(y + 1, y)[y := x + 2])

≡ max((x + 2) + 1, x + 2). ⊓⊔

Note 2.1. The first clause of the Lemma 2.2 on Identical Substitutions holds
also, appropriately rephrased, for simultaneous substitutions: for all expres-
sions s
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• s[x̄ := t̄] ≡ s if s does not contain any variable xi from the list x̄. ⊓⊔

The application of simultaneous subsitution to an assertion p is denoted
by

p[x̄ := t̄]

and defined inductively over the structure of p, as in the case of a substitution
for a single simple variable.

2.8 Substitution Lemma

In this section we connect the notions of substitution and of update intro-
duced in Sections 2.7 and 2.3. We begin by noting the following so-called
coincidence lemma.

Lemma 2.3. (Coincidence) For all expressions s, all assertions p and all
proper states σ and τ

(i) if σ[var(s)] = τ [var(s)] then σ(s) = τ(s),
(ii) if σ[free(p)] = τ [free(p)] then σ |= p iff τ |= p.

Proof. See Exercise 2.8. ⊓⊔

Using the Coincidence Lemma we can prove the following lemma which is
used in the next chapter when discussing the assignment statement.

Lemma 2.4. (Substitution) For all expressions s and t, all assertions p,
all simple or subscripted variables u of the same type as t and all proper states
σ,

(i) σ(s[u := t]) = σ[u := σ(t)](s),
(ii) σ |= p[u := t] iff σ[u := σ(t)] |= p.

Clause (i) relates the value of the expression s[u := t] in a state σ to the
value of the expression s in an updated state, and similarly with (ii).

Proof. (i) The proof proceeds by induction on the structure of s. Suppose
first that s is a simple variable. Then when s ≡ u, we have

σ(s[u := t])

= {definition of substitution}

σ(t)

= {definition of update}

σ[s := σ(t)](s)

= {s ≡ u}

σ[u := σ(t)](s),
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and when s 6≡ u the same conclusion follows by the Identical Substitution
Lemma 2.2 and the definition of an update.

The case when s is a subscripted variable, say s ≡ a[s1, . . ., sn], is slightly
more complicated. When u is a simple variable or u ≡ b[t1, . . ., tm] where
a 6≡ b, we have

σ(s[u := t])

= {definition of substitution}

σ(a[s1[u := t], . . ., sn[u := t]])

= {definition of semantics}

σ(a)(σ(s1[u := t]), . . ., σ(sn[u := t]))

= {induction hypothesis}

σ(a)(σ[u := σ(t)](s1), . . ., σ[u := σ(t)](sn))

= {by definition of update, σ[u := σ(t)](a) = σ(a)}

σ[u := σ(t)](a)(σ[u := σ(t)](s1), . . ., σ[u := σ(t)](sn))

= {definition of semantics, s ≡ a[s1, . . ., sn]}

σ[u := σ(t)](s)

and when u ≡ a[t1, . . ., tn], we have

σ(s[u := t])

= {definition of substitution, s ≡ a[s1, . . ., sn], u ≡ a[t1, . . ., tn] }

σ(if
∧n

i=1 si[u := t] = ti then t else a[s1[u := t], . . ., sn[u := t]] fi)

= {definition of semantics}
{

σ(t) if σ(si[u := t]) = σ(ti) for i ∈ {1, . . . , n}
σ(a)(σ(s1[u := t]), . . ., σ(sn[u := t])) otherwise

= {definition of update, u ≡ a[t1, . . ., tn]}

σ[u := σ(t)](a)(σ(s1[u := t]), . . ., σ(sn[u := t]))

= {induction hypothesis}

σ[u := σ(t)](a)(σ[u := σ(t)](s1), . . ., σ[u := σ(t)](sn))

= {definition of semantics, s ≡ a[s1, . . ., sn]}

σ[u := σ(t)](s).

The remaining cases are straightforward and left to the reader.

(ii) The proof also proceeds by induction on the structure of p. The base case,
which concerns Boolean expressions, is now implied by (i). The induction step
is straightforward with the exception of the case when p is of the form ∃x : r
or ∀x : r. Let y be a simple variable that does not appear in r, t or u and is
of the same type as x. We then have
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σ |= (∃x : r)[u := t]

iff {definition of substitution}

σ |= ∃y : r[x := y][u := t]

iff {definition of truth}

σ′ |= r[x := y][u := t]

for some element d from the type associated

with y and σ′ = σ[y := d]

iff {induction hypothesis}

σ′[u := σ′(t)] |= r[x := y]

for some d and σ′ as above

iff {y 6≡ x so σ′[u := σ′(t)](y) = d,

induction hypothesis}

σ′[u := σ′(t)][x := d] |= r

for some d and σ′ as above

iff {Coincidence Lemma 2.3, choice of y}

σ[u := σ(t)][x := d] |= r

for some d as above

iff {definition of truth}

σ[u := σ(t)] |= ∃x : r.

An analogous chain of equivalences deals with the case when p is of the
form ∀x : r. This concludes the proof. ⊓⊔

Example 2.9. Let a and b be arrays of type integer → integer, x an integer
variable and σ a proper state such that σ(x) = 1 and σ(a)(1) = 2. Then

σ[b[1] := 2](a[b[x]])

= {Substitution Lemma 2.4}

σ(a[b[x]][b[1] := 2])

= {Example 2.7}

σ(a[if x = 1 then 2 else b[x] fi])

= {Example 2.5}

= σ(a[2]).

Of course, a direct application of the definition of an update also leads to
this result. ⊓⊔

Finally, we state the Substitution Lemma for the case of simultaneous
substitutions.
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Lemma 2.5. (Simultaneous Substitution) Let x̄ = x1, . . . , xn be a list of
distinct simple variables of type T1, . . . , Tn and t̄ = t1, . . . , tn a corresponding
list of expressions of type x1, . . . , xn. Then for all expressions s, all assertions
p, and all proper states σ,

(i) σ(s[x̄ := t̄]) = σ[x̄ := σ(t̄)](s),
(ii) σ |= p[x̄ := t̄] iff σ[x̄ := σ(t̄)] |= p,

where σ(t̄) = σ(t1), . . . , σ(tn).

Clause (i) relates the value of the expression s[x̄ := t̄] in a state σ to the
value of the expression s in an updated state, and similarly with (ii).

Proof. Analogously to that of the Substitution Lemma 2.4. ⊓⊔

2.9 Exercises

2.1. Simplify the following assertions:

(i) (p ∨ (q ∨ r)) ∧ (q → (r → p)),
(ii) (s < t ∨ s = t) ∧ t < u,
(iii) ∃x : (x < t ∧ (p ∧ (q ∧ r))) ∨ s = u.

2.2. Compute the following expressions using the definition of substitution:

(i) (x + y)[x := z][z := y],
(ii) (a[x] + y)[x := z][a[2] := 1],
(iii) a[a[2]][a[2] := 2].

2.3. Compute the following values:

(i) σ[x := 0](a[x]),
(ii) σ[y := 0](a[x]),
(iii) σ[a[0] := 2](a[x]),
(iv) τ [a[x] := τ(x)](a[1]), where τ = σ[x := 1][a[1] := 2].

2.4. Prove that

(i) p ∧ (q ∧ r) is equivalent to (p ∧ q) ∧ r,
(ii) p ∨ (q ∨ r) is equivalent to (p ∨ q) ∨ r,
(iii) p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r),
(iv) p ∧ (q ∨ r) is equivalent to (p ∧ q) ∨ (p ∧ r),
(v) ∃x : (p ∨ q) is equivalent to ∃x : p ∨ ∃x : q,
(vi) ∀x : (p ∧ q) is equivalent to ∀x : p ∧ ∀x : q.
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2.5.

(i) Is ∃x : (p ∧ q) equivalent to ∃x : p ∧ ∃x : q?
(ii) Is ∀x : (p ∨ q) equivalent to ∀x : p ∨ ∀x : q?
(iii) Is (∃x : z = x + 1)[z := x + 2] equivalent to ∃y : x + 2 = y + 1?
(iv) Is (∃x : a[s] = x + 1)[a[s] := x + 2] equivalent to ∃y : x + 2 = y + 1?

2.6. Show that for a simple variable x of type T updates can be used to
characterize the semantics of quantifiers:

• σ |= ∀x : p iff σ[x := d] |= p for all data values d from DT ,
• σ |= ∃x : p iff σ[x := d] |= p for some data value d from DT .

2.7. Prove the Meaning of Assertion Lemma 2.1.

2.8. Prove the Coincidence Lemma 2.3.

2.9.

(i) Prove that p[x := 1][y := 2] is equivalent to p[y := 2][x := 1], where x
and y are distinct variables.
Hint. Use the Substitution Lemma 2.4.

(ii) Give an example when the assertions p[x := s][y := t] and p[y := t][x :=
s] are not equivalent.

2.10.

(i) Prove that p[a[1] := 1][a[2] := 2] is equivalent to p[a[2] := 2][a[1] := 1].
Hint. Use the Substitution Lemma 2.4.

(ii) Give an example when the assertions p[a[s1] := t1][a[s2] := t2] and
p[a[s2] := t2][a[s1] := t1] are not equivalent.

2.11. Prove Lemma 2.5 on Simultaneous Substitution.

2.10 Bibliographic Remarks

Our use of types is very limited in that no subtypes are allowed and higher
types can be constructed only directly out of the basic types. A more extended
use of types in mathematical logic is discussed in Girard, Lafont and Taylor
[1989], and of types in programming languages in Cardelli [1991] and Mitchell
[1990].

For simplicity all functions and relations used in this book are assumed to
be totally defined. A theory of program verification in the presence of partially
defined functions and relations is developed in the book by Tucker and Zucker
[1988]. In Chapter 3 of this book we explain how we can nevertheless model
partially defined expressions by the programming concept of failure.
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Our definition of substitution for a simple variable is the standard one
used in mathematical logic. The definitions of substitution for a subscripted
variable, of a state, and of an update of a state are taken from de Bakker
[1980], where the Substitution Lemma 2.4 also implicitly appears.

To the reader interested in a more thorough introduction to the basic
concepts of mathematical logic we recommend the book by van Dalen [2004].
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I N A DETERMINISTIC program there is at most one instruction to be

executed “next,” so that from a given initial state only one execution

sequence is generated. In classical programming languages like Pascal, only

deterministic programs can be written. In this chapter we study a small class

of deterministic programs, called while programs, which are included in all

other classes of programs studied in this book.

We start by defining the syntax (Section 3.1), then introduce an opera-

tional semantics (Section 3.2), subsequently study program verification by

introducing proof systems allowing us to prove various program properties

and prove the soundness of the introduced proof systems (Section 3.3). This

55
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pattern is repeated for all classes of programs studied in this book. We intro-

duce here two semantics —partial correctness and total correctness semantics.

The former does not take into account the possibility of divergence while the

latter does.

The proof theory deals with correctness formulas. These formulas have

the form {p} S {q} where p and q are assertions and S is a program. We

introduce here two proof systems —one for proving the correctness formulas

in the sense of partial correctness and the other for proving them in the

sense of total correctness. Then we prove their soundness with respect to the

underlying semantics.

Next, in Section 3.4, we introduce a convenient proof presentation, called a

proof outline, that allows us to present correctness proofs by giving a program

interleaved with assertions at appropriate places. This form of proof presen-

tation is especially important in Chapters 8 and 9 when studying parallel

programs.

In Section 3.5 we study completeness of the introduced proof systems,

that is, the problem whether all true correctness formulas can be proved in

the corresponding proof systems. Then, in Sections 3.6 and 3.7 we study two

simple programming constructs that will be useful in the later chapters: the

parallel assignment and the failure statement.

Next, in Section 3.8, we introduce auxiliary axioms and proof rules that

allow us to organize correctness proofs in a different way. These axioms and

proof rules are especially helpful when studying other classes of programs in

this book.

In Section 3.9 we prove as a first case study the correctness of the well-

known partition program. In Section 3.10 we explain an approach originated

by Dijkstra [1976] allowing us to systematically develop programs together

with their correctness proofs. Finally, in Section 3.11, as a case study, we

develop a small but not so obvious program for computing the so-called

minimum-sum section of an array.
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3.1 Syntax

A while program is a string of symbols including the keywords if, then, else,
fi, while, do and od, that is generated by the following grammar:

S ::= skip | u := t | S1; S2 | if B then S1 else S2 fi | while B do S1 od.

Following the conventions of the previous chapter, the letter u stands for a
simple or subscripted variable, t for an expression and B for a Boolean ex-
pression. We require that in an assignment u := t the variable u and the
expression t are of the same type. Since types are implied by the notational
conventions of the previous chapter, we do not declare variables in the pro-
grams. To avoid repeated qualifications, we assume that all programs con-
sidered in this book are syntactically correct. Sometimes instead of programs
we talk about statements. As an abbreviation we introduce

if B then S fi ≡ if B then S else skip fi.

As usual, spaces and indentation are used to make programs more readable,
but these additions are not part of the formal syntax. Here and elsewhere,
programs are denoted by letters R,S, T .

Although we assume that the reader is familiar with while programs as
defined above, we recall how they are executed. The statement skip changes
nothing and just terminates. An assignment u := t assigns the value of the
expression t to the (possibly subscripted) variable u and then terminates.
A sequential composition S1; S2 is executed by executing S1 and, when it
terminates, executing S2. Since this interpretation of sequential composition
is associative, we need not introduce brackets enclosing S1; S2. Execution
of a conditional statement if B then S1 else S2 fi starts by evaluating the
Boolean expression B. If B is true, S1 is executed; otherwise (if B is false), S2

is executed. Execution of a loop while B do S od starts with the evaluation
of the Boolean expression B. If B is false, the loop terminates immediately;
otherwise S is executed. When S terminates, the process is repeated.

Given a while program S, we denote by var(S) the set of all simple and
array variables that appear in S and by change(S) the set of all simple and
array variables that can be modified by S. Formally,

change(S) = {x | x is a simple variable that appears in

an assignment of the form x := t in S}

∪ {a | a is an array variable that appears in

an assignment of the form a[s1, . . . , sn] := t in S}.

Both notions are also used in later chapters for other classes of programs.
By a subprogram S of a while program R we mean a substring S of R,

which is also a while program. For example,



58 3 while Programs

S ≡ x := x − 1

is a subprogram of

R ≡ if x = 0 then y := 1 else y := y − x; x := x − 1 fi.

3.2 Semantics

You may be perfectly happy with this intuitive explanation of the meaning
of while programs. In fact, for a long time this has been the style of describ-
ing what constructs in programming languages denote. However, this style
has proved to be error-prone both for implementing programming languages
and for writing and reasoning about individual programs. To eliminate this
danger, the informal explanation should be accompanied by (but not substi-
tuted for!) a rigorous definition of the semantics. Clearly, such a definition is
necessary to achieve the aim of our book: providing rigorous proof methods
for program correctness.

So what exactly is the meaning or semantics of a while program S? It
is a mapping M[[S]] from proper (initial) states to (final) states, using ⊥ to
indicate divergence. The question now arises how to define M[[S]]. There are
two main approaches to such definitions: the denotational approach and the
operational one.

The idea of the denotational approach is to provide an appropriate se-
mantic domain for M[[S]] and then define M[[S]] by induction on the struc-
ture of S, in particular, using fixed point techniques to deal with loops, or
more generally, with recursion (Scott and Strachey [1971], Stoy [1977], Gor-
don [1979],. . .). While this approach works well for deterministic sequential
programs, it gets a lot more complicated for nondeterministic, parallel and
distributed programs.

That is why we prefer to work with an operational approach proposed
by Hennessy and Plotkin [1979] and further developed in Plotkin [1981].
Here, definitions remain very simple for all classes of programs considered in
this book. “Operational” means that first a transition relation → between
so-called configurations of an abstract machine is specified, and then the
semantics M[[S]] is defined with the help of → . Depending on the definition
of a configuration, the transition relation → can model executions at various
levels of detail.

We choose here a “high level” view of an execution, where a configuration
is simply a pair < S, σ > consisting of a program S and a state σ. Intuitively,
a transition

< S, σ > → < R, τ > (3.1)

means: executing S one step in a proper state σ can lead to state τ with
R being the remainder of S still to be executed. To express termination, we
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allow the empty program E inside configurations: R ≡ E in (3.1) means that
S terminates in τ . We stipulate that E; S and S; E are abbreviations of S.

The idea of Hennessy and Plotkin is to specify the transition relation →
by induction on the structure of programs using a formal proof system, called
here a transition system. It consists of axioms and rules about transitions
(3.1). For while programs, we use the following transition axioms and rules
where σ is a proper state:

(i) < skip, σ > → < E, σ >,

(ii) < u := t, σ > → < E, σ[u := σ(t)] >,

(iii)
< S1, σ > → < S2, τ >

< S1; S, σ > → < S2; S, τ >
,

(iv) < if B then S1 else S2 fi, σ > → < S1, σ > where σ |= B,

(v) < if B then S1 else S2 fi, σ > → < S2, σ > where σ |= ¬B,

(vi) < while B do S od, σ > → < S; while B do S od, σ >
where σ |= B,

(vii) < while B do S od, σ > → < E, σ >, where σ |= ¬B.

A transition < S, σ > → < R, τ > is possible if and only if it can
be deduced in the above transition system. (For simplicity we do not use
any provability symbol ⊢ here.) Note that the skip statement, assignments
and evaluations of Boolean expressions are all executed in one step. This
“high level” view abstracts from all details of the evaluation of expressions
in the execution of assignments. Consequently, this semantics is a high-level
semantics.

Definition 3.1. Let S be a while program and σ a proper state.

(i) A transition sequence of S starting in σ is a finite or infinite sequence of
configurations < Si, σi > (i ≥ 0) such that

< S, σ >=< S0, σ0 > → < S1, σ1 > → . . . → < Si, σi > → . . . .

(ii) A computation of S starting in σ is a transition sequence of S starting
in σ that cannot be extended.

(iii) A computation of S is terminating in τ (or terminates in τ) if it is finite
and its last configuration is of the form < E, τ >.

(iv) A computation of S is diverging (or diverges) if it is infinite. S can
diverge from σ if there exists an infinite computation of S starting in σ.

(v) To describe the effect of finite transition sequences we use the transitive,
reflexive closure →∗ of the transition relation → :

< S, σ > →∗ < R, τ >

holds when there exist configurations < S1, σ1 >, . . ., < Sn, σn > with
n ≥ 0 such that
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< S, σ >=< S1, σ1 > → . . . → < Sn, σn >=< R, τ >

holds. In the case when n = 0, < S, σ >=< R, τ > holds. ⊓⊔

We have the following lemmata.

Lemma 3.1. (Determinism) For any while program S and a proper state
σ, there is exactly one computation of S starting in σ.

Proof. Any configuration has at most one successor in the transition relation
→ . ⊓⊔

This lemma explains the title of this part of the book: deterministic pro-
grams. It also shows that for while programs the phrase “S can diverge from
σ” may be actually replaced by the more precise statement “S diverges from
σ.” On the other hand, in subsequent chapters we deal with programs ad-
mitting various computations from a given state and for which we retain this
definition. For such programs, this phrase sounds more appropriate.

Lemma 3.2. (Absence of Blocking) If S 6≡ E then for any proper state
σ there exists a configuration < S1, τ > such that

< S, σ > → < S1, τ > .

Proof. If S 6≡ E then any configuration < S, σ > has a successor in the
transition relation → . ⊓⊔

This lemma states that if S did not terminate then it can be executed for
at least one step. Both lemmata clearly depend on the syntax of the programs
considered here. The Determinism Lemma 3.1 will fail to hold for all classes of
programs studied from Chapter 7 on and the Absence of Blocking Lemma 3.2
will not hold for a class of parallel programs studied in Chapter 9 and for
distributed programs studied in Chapter 11.

Definition 3.2. We now define two input/output semantics for while pro-
grams. Each of them associates with a program S and a proper state σ ∈ Σ
a set of output states.

(i) The partial correctness semantics is a mapping

M[[S]] : Σ →P(Σ)

with
M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >}.

(ii) The total correctness semantics is a mapping

Mtot [[S]] : Σ →P(Σ ∪ {⊥})
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with

Mtot [[S]](σ) = M[[S]](σ) ∪ {⊥ | S can diverge from σ}. ⊓⊔

The reason for this choice of names becomes clear in the next section. The
difference between these semantics lies in the way the ‘negative’ information
about the program is dealt with —either it is dropped or it is explicitly men-
tioned: M[[S]](σ) consists of proper states, whereas Mtot [[S]](σ) may contain
⊥. Thus the negative information consists here of the possibility of diver-
gence.

Observe that, by the Determinism Lemma 3.1, M[[S]](σ) has at most one
element and Mtot [[S]](σ) has exactly one element.

Let us consider an example to clarify the above concepts.

Example 3.1. Consider the program

S ≡ a[0] := 1; a[1] := 0; while a[x] 6= 0 do x := x + 1 od

and let σ be a proper state in which x is 0.
According to the Determinism Lemma 3.1 there is exactly one computation

of S starting in σ. It has the following form, where σ′ stands for σ[a[0] :=
1][a[1] := 0], which is the iterated update of σ:

< S, σ >

→ < a[1] := 0; while a[x] 6= 0 do x := x + 1 od, σ[a[0] := 1] >

→ < while a[x] 6= 0 do x := x + 1 od, σ′ >

→ < x := x + 1; while a[x] 6= 0 do x := x + 1 od, σ′ >

→ < while a[x] 6= 0 do x := x + 1 od, σ′[x := 1] >

→ < E, σ′[x := 1] > .

Thus S when activated in σ terminates in five steps. We have

M[[S]](σ) = Mtot [[S]](σ) = {σ′[x := 1]}.

Now let τ be a state in which x is 2 and for i = 2, 3, . . ., a[i] is 1. The
computation of S starting in τ has the following form where τ ′ stands for
τ [a[0] := 1][a[1] := 0]:
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< S, τ >

→ < a[1] := 0; while a[x] 6= 0 do x := x + 1 od, τ [a[0] := 1] >

→ < while a[x] 6= 0 do x := x + 1 od, τ ′ >

→ < x := x + 1; while a[x] 6= 0 do x := x + 1 od, τ ′ >

→ < while a[x] 6= 0 do x := x + 1 od, τ ′[x := τ(x) + 1] >

. . .

→ < while a[x] 6= 0 do x := x + 1 od, τ ′[x := τ(x) + k] >

. . .

Thus S can diverge from τ . We have M[[S]](τ) = ∅ and Mtot [[S]](τ) = {⊥}.
⊓⊔

This example shows that the transition relation → indeed formalizes the
intuitive idea of a computation.

Properties of Semantics

The semantics M and Mtot satisfy several simple properties that we use
in the sequel. Let Ω be a while program such that for all proper states σ,
M[[Ω]](σ) = ∅; for example, Ω ≡ while true do skip od. Define by induc-
tion on k ≥ 0 the following sequence of while programs:

(while B do S od)0 = Ω,
(while B do S od)k+1 = if B then S; (while B do S od)k

else skip fi.

In the following let N stand for M or Mtot . We extend N to deal with the
error state ⊥ by

M[[S]](⊥) = ∅ and Mtot [[S]](⊥) = {⊥}

and to deal with sets of states X ⊆ Σ ∪ {⊥} by

N [[S]](X) =
⋃

σ∈X

N [[S]](σ).

The following lemmata collect the properties of M and Mtot we need.

Lemma 3.3. (Input/Output)

(i) N [[S]] is monotonic; that is, X ⊆ Y ⊆ Σ ∪ {⊥} implies
N [[S]](X) ⊆N [[S]](Y ).

(ii) N [[S1; S2]](X) = N [[S2]](N [[S1]](X)).
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(iii) N [[(S1; S2); S3]](X) = N [[S1; (S2; S3)]](X).

(iv) N [[if B then S1 else S2 fi]](X) =
N [[S1]](X ∩ [[B]]) ∪N [[S2]](X ∩ [[¬B]]) ∪ {⊥ | ⊥ ∈ X and N = Mtot}.

(v) M[[while B do S od]](X) =
⋃∞

k=0 M[[(while B do S od)k]](X).

Proof. See Exercise 3.1. ⊓⊔

Clause (iii) of the above lemma states that two possible parsings of an am-
biguous statement S1; S2; S3 yield programs with the same semantics. This
justifies our previous remark in Section 3.1 that the sequential composition
is associative.

Note that clause (v) fails for the case of Mtot semantics. The reason
is that for all proper states σ we have Mtot [[Ω]](σ) = {⊥} and conse-
quently ⊥ ∈

⋃∞
k=0 Mtot [[(while B do S od)k]](σ) holds for every program

while B do S od. On the other hand for some programs while B do S od
and proper states σ we have ⊥ 6∈ Mtot [[while B do S od]](σ).

Lemma 3.4. (Change and Access)

(i) For all proper states σ and τ , τ ∈ N [[S]](σ) implies

τ [V ar − change(S)] = σ[V ar − change(S)].

(ii) For all proper states σ and τ , σ[var(S)] = τ [var(S)] implies

N [[S]](σ) = N [[S]](τ) mod Var − var(S).

Proof. See Exercise 3.2. ⊓⊔

Recall that Var stands for the set of all simple and array variables. Part
(i) of the Change and Access Lemma states that every program S changes
at most the variables in change(S), while part (ii) states that every program
S accesses at most the variables in var(S). This explains the name of this
lemma. It is used often in the sequel.

3.3 Verification

Informally, a while program is correct if it satisfies the intended input/output
relation. Program correctness is expressed by so-called correctness formulas.
These are statements of the form

{p} S {q}

where S is a while program and p and q are assertions. The assertion p is
the precondition of the correctness formula and q is the postcondition. The
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precondition describes the set of initial or input states in which the program S
is started and the postcondition describes the set of desirable final or output
states.

More precisely, we are interested here in two interpretations: a correctness
formula {p} S {q} is true in the sense of partial correctness if every termi-
nating computation of S that starts in a state satisfying p terminates in a
state satisfying q. And {p} S {q} is true in the sense of total correctness if
every computation of S that starts in a state satisfying p terminates and
its final state satisfies q. Thus in the case of partial correctness, diverging
computations of S are not taken into account.

Using the semantics M and Mtot, we formalize these interpretations uni-
formly as set theoretic inclusions.

Definition 3.3.

(i) We say that the correctness formula {p} S {q} is true in the sense of
partial correctness, and write |= {p} S {q}, if

M[[S]]([[p]]) ⊆ [[q]].

(ii) We say that the correctness formula {p} S {q} is true in the sense of
total correctness, and write |=tot {p} S {q}, if

Mtot [[S]]([[p]]) ⊆ [[q]]. ⊓⊔

In other words, since by definition ⊥ 6∈ [[q]], part (ii) indeed formalizes
the above intuition about total correctness. Since for all proper states σ
M[[S]](σ) ⊆Mtot [[S]](σ) holds, |=tot {p} S {q} implies |= {p} S {q}.

The uniform pattern of definitions in (i) and (ii) is followed for all semantics
defined in the book. We can say that each semantics fixes the corresponding
correctness notion in a standard manner.

Example 3.2. Consider once more the program

S ≡ a[0] := 1; a[1] := 0; while a[x] 6= 0 do x := x + 1 od

from Example 3.1. The two computations of S exhibited there show that the
correctness formulas

{x = 0} S {a[0] = 1 ∧ a[1] = 0}

and
{x = 0} S {x = 1 ∧ a[x] = 0}

are true in the sense of total correctness, while

{x = 2} S {true}

is false. Indeed, the state τ of Example 3.1 satisfies the precondition x = 2
but Mtot [[S]](τ) = {⊥}.
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Clearly, all three formulas are true in the sense of partial correctness. Also

{x = 2 ∧ ∀i ≥ 2 : a[i] = 1} S {false}

is true in the sense of partial correctness. This correctness formula states that
every computation of S that begins in a state which satisfies x = 2 ∧ ∀i ≥
2 : a[i] = 1, diverges. Namely, if there existed a finite computation, its final
state would satisfy false which is impossible. ⊓⊔

Partial Correctness

As we have seen in Examples 3.1 and 3.2, reasoning about correctness for-
mulas in terms of semantics is not very convenient. A much more promising
approach is to reason directly on the level of correctness formulas. Following
Hoare [1969], we now introduce a proof system, called PW, allowing us to
prove partial correctness of while programs in a syntax-directed manner, by
induction on the program syntax.

PROOF SYSTEM PW :
This system consists of the group
of axioms and rules 1–6.

AXIOM 1: SKIP
{p} skip {p}

AXIOM 2: ASSIGNMENT

{p[u := t]} u := t {p}

RULE 3: COMPOSITION

{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}

RULE 4: CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

RULE 5: LOOP
{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B}
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RULE 6: CONSEQUENCE

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

We augment each proof system for correctness formulas, in particular PW,
by the set of all true assertions. These assertions are used as premises in the
consequence rule which is part of all proof systems considered in this book.
Using the notation of Section 2.4 we write ⊢PW {p} S {q} for provability of
the correctness formula {p} S {q} in the augmented system PW.

Let us now discuss the above axioms and proof rules. The skip axiom
should be obvious. On the other hand, the first reaction to the assignment
axiom is usually astonishment. The axiom encourages reading the assignment
“backwards”; that is, we start from a given postcondition p and determine
the corresponding precondition p[u := t] by backward substitution. We soon
illustrate the use of this axiom by means of an example.

Easy to understand are the composition rule where we have to find an
appropriate intermediate assertion r and the conditional rule which formalizes
a case distinction according to the truth value of B.

Less apparent is the loop rule. This rule states that if an assertion p is
preserved with each iteration of the loop while B do S od, then p is true
upon termination of this loop. Therefore p is called a loop invariant.

The consequence rule represents the interface between program verification
and logical formulas. It allows us to strengthen the preconditions and weaken
the postconditions of correctness formulas and enables the application of
other proof rules. In particular, the consequence rule allows us to replace a
precondition or a postcondition by an equivalent assertion.

Using the proof system PW we can prove the input/output behavior of
composite programs from the input/output behavior of their subprograms.
For example, using the composition rule we can deduce correctness formulas
about programs of the form S1;S2 from the correctness formulas about S1

and S2. Proof systems with this property are called compositional.

Example 3.3.
(i) Consider the program

S ≡ x := x + 1; y := y + 1.

We prove in the system PW the correctness formula

{x = y} S {x = y}.

To this end we apply the assignment axiom twice. We start with the last
assignment. By backward substitution we obtain

(x = y)[y := y + 1] ≡ x = y + 1;
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so by the assignment axiom

{x = y + 1} y := y + 1 {x = y}.

By a second backward substitution we obtain

(x = y + 1)[x := x + 1] ≡ x + 1 = y + 1;

so by the assignment axiom

{x + 1 = y + 1} x := x + 1 {x = y + 1}.

Combining the above two correctness formulas by the composition rule yields

{x + 1 = y + 1} x := x + 1; y := y + 1 {x = y},

from which the desired conclusion follows by the consequence rule, since

x = y → x + 1 = y + 1.

(ii) Consider now the more complicated program

S ≡ x := 1; a[1] := 2; a[x] := x

using subscripted variables. We prove that after its execution a[1] = 1 holds;
that is, we prove in the system PW the correctness formula

{true} S {a[1] = 1}.

To this end we repeatedly apply the assignment axiom while proceeding
“backwards.” Hence, we start with the last assignment:

{(a[1] = 1)[a[x] := x]} a[x] := x {a[1] = 1}.

By the Identical Substitution Lemma 2.2 we have 1[a[x] := x] ≡ 1. Thus the
substitution in the above correctness formula can be evaluated as follows:

{if 1 = x then x else a[1] fi = 1} a[x] := x {a[1] = 1}.

For the precondition we have the equivalence

if 1 = x then x else a[1] fi = 1 ↔ (x = 1 ∨ a[1] = 1).

Since
x = 1 → (x = 1 ∨ a[1] = 1),

we can strengthen the precondition by the rule of consequence as follows:

{x = 1} a[x] := x {a[1] = 1}.
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Next, consider the second assignment with the postcondition being the pre-
condition of the above correctness formula. We have

{(x = 1)[a[1] := 2]} a[1] := 2 {x = 1},

which by the Identical Substitution Lemma 2.2 gives

{x = 1} a[1] := 2 {x = 1}.

Finally, we consider the first assignment:

{true} x := 1 {x = 1}.

Combining the final correctness formulas obtained for each assignment by
two applications of the composition rule, we get the desired result. ⊓⊔

Let us see now how the loop rule rule can be used. We choose here as
an example the first program (written in a textual form) that was formally
verified. This historic event was duly documented in Hoare [1969].

Example 3.4. Consider the following program DIV for computing the quo-
tient and remainder of two natural numbers x and y:

DIV ≡ quo := 0; rem := x; S0,

where

S0 ≡ while rem ≥ y do rem := rem − y; quo := quo + 1 od.

We wish to show that

if x, y are nonnegative integers and DIV terminates,
then quo is the integer quotient and rem is the (3.2)
remainder of x divided by y.

Thus, using correctness formulas, we wish to show

|= {x ≥ 0 ∧ y ≥ 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}. (3.3)

Note that (3.2) and (3.3) agree because DIV does not change the variables x
and y. Programs that may change x and y can trivially achieve (3.3) without
satisfying (3.2). An example is the program

x := 0; y := 1; quo := 0; rem := 0.

To show (3.3), we prove the correctness formula

{x ≥ 0 ∧ y ≥ 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y} (3.4)
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in the proof system PW. To this end we choose the assertion

p ≡ quo · y + rem = x ∧ rem ≥ 0

as the loop invariant of S0. It is obtained from the postcondition of (3.4) by
dropping the conjunct rem < y. Intuitively, p describes the relation between
the variables of DIV which holds each time the control is in front of the loop
S0.

We now prove the following three facts:

{x ≥ 0 ∧ y ≥ 0} quo := 0; rem := x {p}, (3.5)

that is, the program quo := 0; rem := x establishes p;

{p ∧ rem ≥ y} rem := rem − y; quo := quo + 1 {p}, (3.6)

that is, p is indeed a loop invariant of S0;

p ∧ ¬(rem ≥ y) → quo · y + rem = x ∧ 0 ≤ rem < y, (3.7)

that is, upon exit of the loop S0, p implies the desired assertion.
Observe first that we can prove (3.4) from (3.5), (3.6) and (3.7). Indeed,

(3.6) implies, by the loop rule,

{p} S0 {p ∧ ¬(rem ≥ y)}.

This, together with (3.5), implies, by the composition rule,

{x ≥ 0 ∧ y ≥ 0} DIV {p ∧ ¬(rem ≥ y)}.

Now, by (3.7), (3.4) holds by an application of the consequence rule.
Thus, let us prove now (3.5), (3.6) and (3.7).

Re: (3.5). We have

{quo · y + x = x ∧ x ≥ 0} rem := x {p}

by the assignment axiom. Once more by the assignment axiom

{0 · y + x = x ∧ x ≥ 0} quo := 0 {quo · y + x = x ∧ x ≥ 0};

so by the composition rule

{0 · y + x = x ∧ x ≥ 0} quo := 0; rem := x {p}.

On the other hand,

x ≥ 0 ∧ y ≥ 0 → 0 · y + x = x ∧ x ≥ 0;
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so (3.5) holds by the consequence rule.

Re: (3.6). We have

{(quo + 1) · y + rem = x ∧ rem ≥ 0} quo := quo + 1 {p}

by the assignment axiom. Once more by the assignment axiom

{(quo + 1) · y + (rem − y) = x ∧ rem − y ≥ 0}
rem := rem − y
{(quo + 1) · y + rem = x ∧ rem ≥ 0};

so by the composition rule

{(quo + 1) · y + (rem − y) = x ∧ rem − y ≥ 0}
rem := rem − y; quo := quo + 1
{p}.

On the other hand,

p ∧ rem ≥ y → (quo + 1) · y + (rem − y) = x ∧ rem − y ≥ 0;

so (3.6) holds by the consequence rule.

Re: (3.7). Clear.

This completes the proof of (3.4). ⊓⊔

The only step in the above proof that required some creativity was find-
ing the appropriate loop invariant. The remaining steps were straightforward
applications of the corresponding axioms and proof rules. The form of the
assignment axiom makes it easier to deduce a precondition from a postcon-
dition than the other way around; so the proofs of (3.5) and (3.6) proceeded
“backwards.” Finally, we did not provide any formal proof of the implications
used as premises of the consequence rule. Formal proofs of such assertions are
always omitted; we simply rely on an intuitive understanding of their truth.

Total Correctness

It is important to note that the proof system PW does not allow us to es-
tablish termination of programs. Thus PW is not appropriate for proofs of
total correctness. Even though we proved in Example 3.4 the correctness for-
mula (3.4), we cannot infer from this fact that program DIV studied there
terminates. In fact, DIV diverges when started in a state in which y is 0.
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Clearly, the only proof rule of PW that introduces the possibility of non-
termination is the loop rule, so to deal with total correctness this rule must
be strengthened.

We now introduce the following refinement of the loop rule:

RULE 7: LOOP II

{p ∧ B} S {p},
{p ∧ B ∧ t = z} S {t < z},
p → t ≥ 0

{p} while B do S od {p ∧ ¬ B}

where t is an integer expression and z is an integer variable that does not
appear in p,B, t or S.

The two additional premises of the rule guarantee termination of the loop.
In the second premise, the purpose of z is to retain the initial value of z. Since
z does not appear in S, it is not changed by S and upon termination of S z
indeed holds the initial value of t. By the second premise, t is decreased with
each iteration and by the third premise t is nonnegative if another iteration
can be performed. Thus no infinite computation is possible. Expression t is
called a bound function of the loop while B do S od.

To prove total correctness of while programs we use the following proof
system TW :

PROOF SYSTEM TW :
This system consists of the group
of axioms and rules 1–4, 6, 7.

Thus TW is obtained from PW by replacing the loop rule (rule 5) by the
loop II rule (rule 7).

To see an application of the loop II rule, let us reconsider the program
DIV studied in Example 3.4.

Example 3.5. We now wish to show that

if x is nonnegative and y is a positive integer, then
S terminates with quo being the integer quotient (3.8)
and rem being the remainder of x divided by y.

In other words, we wish to show

|=tot {x ≥ 0 ∧ y > 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}. (3.9)

To show (3.9), we prove the correctness formula

{x ≥ 0 ∧ y > 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y} (3.10)
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in the proof system TW. Note that (3.10) differs from correctness formula
(3.4) in Example 3.4 by requiring that initially y > 0. We prove (3.10) by a
modification of the proof of (3.4). Let

p′ ≡ p ∧ y > 0,

be the loop invariant where, as in Example 3.4,

p ≡ quo · y + rem = x ∧ rem ≥ 0,

and let
t ≡ rem

be the bound function. As in the proof given in Example 3.4, to prove (3.10)
in the sense of total correctness it is sufficient to establish the following facts:

{x ≥ 0 ∧ y > 0} quo := 0; rem := x {p′}, (3.11)

{p′ ∧ rem ≥ y} rem := rem − y; quo := quo + 1 {p′}, (3.12)

{p′ ∧ rem ≥ y ∧ rem = z}
rem := rem − y; quo := quo + 1 (3.13)
{rem < z}.

p′ → rem ≥ 0, (3.14)

p′ ∧ ¬(rem ≥ y) → quo · y + rem = x ∧ 0 ≤ rem < y. (3.15)

By the loop II rule, (3.12), (3.13) and (3.14) imply the correctness formula
{p′} S0 {p′ ∧ ¬(rem ≥ y)}, and the rest of the argument is the same as in
Example 3.4. Proofs of (3.11), (3.12) and (3.15) are analogous to the proofs
of (3.5), (3.6) and (3.7) in Example 3.4.

To prove (3.13) observe that by the assignment axiom

{rem < z} quo := quo + 1 {rem < z}

and
{(rem − y) < z} rem := rem − y {rem < z}.

But
p ∧ y > 0 ∧ rem ≥ y ∧ rem = z → (rem − y) < z,

so (3.13) holds by the consequence rule.
Finally, (3.14) clearly holds.

This concludes the proof. ⊓⊔
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Decomposition

Proof system TW with loop rule II allows us to establish total correctness
of while programs directly. However, sometimes it is more convenient to de-
compose the proof of total correctness into two separate proofs, one of partial
correctness and one of termination. More specifically, given a correctness for-
mula {p} S {q}, we first establish its partial correctness, using proof system
PW. Then, to show termination it suffices to prove the simpler correctness
formula {p} S {true} using proof system TW.

These two different proofs can be combined into one using the following
general proof rule for total correctness:

RULE A1: DECOMPOSITION

⊢p {p} S {q},
⊢t {p} S {true}

{p} S {q}

where the provability signs ⊢p and ⊢t refer to proof systems for partial and
total correctness for the considered program S, respectively.

In this chapter we refer to the proof systems PW and TW for while pro-
grams. However, the decomposition rule will also be used for other classes of
programs. We refrain from presenting a simpler correctness proof of Exam-
ple 3.5 using this decomposition rule until Section 3.4, where we introduce
the concept of a proof outline.

Soundness

We have just established:

⊢PW {x ≥ 0 ∧ y ≥ 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}

and

⊢TW {x ≥ 0 ∧ y > 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}.

However, our goal was to show

|= {x ≥ 0 ∧ y ≥ 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}

and

|=tot {x ≥ 0 ∧ y > 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y}.
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This goal is reached if we can show that provability of a correctness formula
in the proof systems PW and TW implies its truth. In the terminology of
logic this property is called soundness of a proof system.

Definition 3.4. Let G be a proof system allowing us to prove correctness
formulas about programs in a certain class C. We say that G is sound for
partial correctness of programs in C if for all correctness formulas {p} S {q}
about programs in C

⊢G {p} S {q} implies |= {p} S {q},

and G is sound for total correctness of programs in C if for all correctness
formulas {p} S {q} about programs in C

⊢G {p} S {q} implies |=tot {p} S {q}.

When the class of programs C is clear from the context, we omit the reference
to it. ⊓⊔

We now wish to establish the following result.

Theorem 3.1. (Soundness of PW and TW)

(i) The proof system PW is sound for partial correctness of while programs.
(ii) The proof system TW is sound for total correctness of while programs.

To prove this theorem it is sufficient to reason about each axiom and proof
rule of PW and TW separately. For each axiom we show that it is true and for
each proof rule we show that it is sound, that is, that the truth of its premises
implies the truth of its conclusion. This motivates the following definition.

Definition 3.5. A proof rule of the form

ϕ1, . . ., ϕk

ϕk+1

is called sound for partial (total) correctness (of programs in a class C) if the
truth of ϕ1, . . ., ϕk in the sense of partial (total) correctness implies the truth
of ϕk+1 in the sense of partial (total) correctness.

If some of the formulas ϕi are assertions then we identify their truth in
the sense of partial (total) correctness with the truth in the usual sense (see
Section 2.6). ⊓⊔

We now come to the proof of the Soundness Theorem 3.1.

Proof. Due to the form of the proof systems PW and TW, it is sufficient
to prove that all axioms of PW (TW) are true in the sense of partial (total)
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correctness and that all proof rules of PW (TW) are sound for partial (total)
correctness. Then the result follows by the induction on the length of proofs.

We consider all axioms and proof rules in turn.

SKIP
Clearly N [[skip]]([[p]]) = [[p]] for any assertion p, so the skip axiom is true in
the sense of partial (total) correctness.

ASSIGNMENT
Let p be an assertion. By the Substitution Lemma 2.4 and transition axiom
(ii), whenever N [[u := t]](σ) = {τ}, then

σ |= p[u := t] iff τ |= p.

This implies N [[u := t]]([[p[u := t]]]) ⊆ [[p]], so the assignment axiom is true in
the sense of partial (total) correctness.

COMPOSITION
Suppose that

N [[S1]]([[p]]) ⊆ [[r]]

and
N [[S2]]([[r]]) ⊆ [[q]].

Then by the monotonicity of N [[S2]] (the Input/Output Lemma 3.3(i))

N [[S2]](N [[S1]]([[p]])) ⊆N [[S2]]([[r]]) ⊆ [[q]].

But by the Input/Output Lemma 3.3(ii)

N [[S1; S2]]([[p]]) = N [[S2]](N [[S1]]([[p]]));

so
N [[S1; S2]]([[p]]) ⊆ [[q]].

Thus the composition rule is sound for partial (total) correctness.

CONDITIONAL
Suppose that

N [[S1]]([[p ∧ B]]) ⊆ [[q]]

and
N [[S2]]([[p ∧ ¬B]]) ⊆ [[q]].

By the Input/Output Lemma 3.3(iv)
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N [[if B then S1 else S2 fi]]([[p]])

= N [[S1]]([[p ∧ B]]) ∪N [[S2]]([[p ∧ ¬B]]);

so
N [[if B then S1 else S2 fi]]([[p]]) ⊆ [[q]].

Thus the conditional rule is sound for partial (total) correctness.

LOOP
Suppose now that for some assertion p

M[[S]]([[p ∧ B]]) ⊆ [[p]]. (3.16)

We prove by induction that for all k ≥ 0

M[[(while B do S od)k]]([[p]]) ⊆ [[p ∧ ¬B]].

The case k = 0 is clear. Suppose the claim holds for some k > 0. Then

M[[(while B do S od)k+1]]([[p]])

= {definition of (while B do S od)k+1}

M[[if B then S; (while B do S od)k else skip fi]]([[p]])

= {Input/Output Lemma 3.3(iv)}

M[[S; (while B do S od)k]]([[p ∧ B]]) ∪M[[skip]]([[p ∧ ¬B]])

= {Input/Output Lemma 3.3(ii) and semantics of skip}

M[[(while B do S od)k]](M[[S]]([[p ∧ B]])) ∪ [[p ∧ ¬B]]

⊆ {(3.16) and monotonicity of M[[(while B do S od)k]]}

M[[(while B do S od)k]]([[p]]) ∪ [[p ∧ ¬B]]

⊆ {induction hypothesis}

[[p ∧ ¬B]].

This proves the induction step. Thus

∞⋃

k=0

M[[(while B do S od)k]]([[p]]) ⊆ [[p ∧ ¬B]].

But by the Input/Output Lemma 3.3(v)

M[[while B do S od]] =
∞⋃

k=0

M[[(while B do S od)k]];

so
M[[while B do S od]]([[p]]) ⊆ [[p ∧ ¬B]].
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Thus the loop rule is sound for partial correctness.

CONSEQUENCE
Suppose that

p → p1, N [[S]]([[p1]]) ⊆ [[q1]], and q1 → q.

Then, by the Meaning of Assertion Lemma 2.1, the inclusions [[p]] ⊆ [[p1]] and
[[q1]] ⊆ [[q]] hold; so by the monotonicity of N [[S]],

N [[S]]([[p]]) ⊆N [[S]]([[p1]]) ⊆ [[q1]] ⊆ [[q]].

Thus the consequence rule is sound for partial (total) correctness.

LOOP II
Suppose that

Mtot [[S]]([[p ∧ B]]) ⊆ [[p]], (3.17)

Mtot [[S]]([[p ∧ B ∧ t = z]]) ⊆ [[t < z]], (3.18)

and
p → t ≥ 0, (3.19)

where z is an integer variable that does not occur in p,B, t or S. We show
then that

⊥ 6∈ Mtot [[T ]]([[p]]), (3.20)

where T ≡ while B do S od.
Suppose otherwise. Then there exists an infinite computation of T starting

in a state σ such that σ |= p. By (3.19) σ |= t ≥ 0, so σ(t) ≥ 0. Choose now
an infinite computation ξ of T starting in a state σ such that σ |= p for which
this value σ(t) is minimal. Since ξ is infinite, σ |= B; so σ |= p ∧ B.

Let τ = σ[z := σ(t)]. Thus τ agrees with σ on all variables except z to
which it assigns the value σ(t). Then

τ(t)

= {assumption about z, Coincidence Lemma 2.3(i)}

σ(t)

= {definition of τ}

τ(z);

so τ |= t = z. Moreover, also by the assumption about z, τ |= p ∧ B, since
σ |= p ∧ B. Thus

τ |= p ∧ B ∧ t = z. (3.21)

By the monotonicity of Mtot, (3.17) and (3.18) imply

Mtot [[S]][[p ∧ B ∧ t = z]] ⊆ [[p ∧ t < z]],
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since [[p ∧ B ∧ t = z]] ⊆ [[p ∧ B]]. Thus by (3.21) for some state σ1

< S, τ > →∗ < E, σ1 > (3.22)

and
σ1 |= p ∧ t < z. (3.23)

Also, by (3.21) and the definition of semantics < T, τ > → < S; T, τ >; so
by (3.22) < T, τ > →∗ < T, σ1 >. But by the choice of τ and the Change and
Access Lemma 3.4(ii) T diverges from τ ; so by the Determinism Lemma 3.1
it also diverges from σ1.

Moreover,

σ1(t)

< {(3.23)}

σ1(z)

= {(3.22),Change and Access Lemma 3.4(i) and

assumption about z}

τ(z)

= {definition of τ}

σ(t).

This contradicts the choice of σ and proves (3.20).
Finally, by (3.17) M[[S]]([[p ∧ B]]) ⊆ [[p]]; so by the soundness of the loop

rule for partial correctness M[[T ]]([[p]]) ⊆ [[p ∧ ¬B]]. But (3.20) means that

Mtot [[T ]]([[p]]) = M[[T ]]([[p]]);

so
Mtot [[T ]]([[p]]) ⊆ [[p ∧ ¬B]].

Thus the loop II rule is sound for total correctness. ⊓⊔

Our primary goal in this book is to verify programs, that is, to prove the
truth of certain correctness formulas. The use of certain proof systems is
only a means of achieving this goal. Therefore we often apply proof rules to
reason directly about the truth of correctness formulas. This is justified by
the corresponding soundness theorems.

Thus, in arguments such as: “by (the truth of) assignment axiom we have

|= {x + 1 = y + 1} x := x + 1 {x = y + 1}

and
|= {x = y + 1} y := y + 1 {x = y};

so by (the soundness of) the composition and consequence rules we obtain
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|= {x = y} x := x + 1; y := y + 1 {x = y}, ”

we omit the statements enclosed in brackets.

3.4 Proof Outlines

Formal proofs are tedious to follow. We are not accustomed to following a
line of reasoning presented in small formal steps. A better solution consists
of a logical organization of the proof with the main steps isolated. The proof
can then be seen on a different level.

In the case of correctness proofs of while programs, a possible strategy lies
in using the fact that they are structured. The proof rules follow the syntax
of the programs; so the structure of the program can be used to structure
the correctness proof. We can simply present the proof by giving a program
with assertions interleaved at appropriate places.

Partial Correctness

Example 3.6. Let us reconsider the integer division program studied in Ex-
ample 3.4. We present the correctness formulas (3.5), (3.6) and (3.7) in the
following form:

{x ≥ 0 ∧ y ≥ 0}
quo := 0; rem := x;
{inv : p}
while rem ≥ y do

{p ∧ rem ≥ y}
rem := rem − y; quo := quo + 1

od
{p ∧ rem < y}
{quo · y + rem = x ∧ 0 ≤ rem < y},

where

p ≡ quo · y + rem = x ∧ rem ≥ 0.

The keyword inv is used here to label the loop invariant. Two adjacent as-
sertions {q1}{q2} stand for the fact that the implication q1 → q2 is true.

The proofs of (3.5), (3.6) and (3.7) can also be presented in such a form.
For example, here is the proof of (3.5):
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{x ≥ 0 ∧ y ≥ 0}
{0 · y + x = x ∧ x ≥ 0}
quo := 0
{quo · y + x = x ∧ x ≥ 0}
rem := x
{p}. ⊓⊔

This type of proof presentation is simpler to study and analyze than the
one we used so far. Introduced in Owicki and Gries [1976a], it is called a proof
outline. It is formally defined as follows.

Definition 3.6. (Proof Outline: Partial Correctness) Let S∗ stand for
the program S interspersed, or as we say annotated, with assertions, some of
them labeled by the keyword inv. We define the notion of a proof outline for
partial correctness inductively by the following formation axioms and rules.

A formation axiom ϕ should be read here as a statement: ϕ is a proof
outline (for partial correctness). A formation rule

ϕ1, . . ., ϕk

ϕk+1

should be read as a statement: if ϕ1, . . ., ϕk are proof outlines, then ϕk+1 is
a proof outline.

(i) {p} skip {p}

(ii) {p[u := t]} u := t {p}

(iii)
{p} S∗

1 {r}, {r} S∗
2 {q}

{p} S∗
1 ; {r} S∗

2 {q}

(iv)
{p ∧ B} S∗

1 {q}, {p ∧ ¬B} S∗
2 {q}

{p} if B then {p ∧ B} S∗
1 {q} else {p ∧ ¬B} S∗

2 {q} fi {q}

(v)
{p ∧ B} S∗ {p}

{inv : p} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

(vi)
p → p1, {p1} S∗ {q1}, q1 → q

{p}{p1} S∗ {q1}{q}

(vii)
{p} S∗ {q}

{p} S∗∗ {q}
where S∗∗ results from S∗ by omitting some annotations of the form
{r}. Thus all annotations of the form {inv : r} remain.

A proof outline {p} S∗ {q} for partial correctness is called standard if every
subprogram T of S is preceded by exactly one assertion in S∗, called pre(T ),
and there are no other assertions in S∗. ⊓⊔
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Thus, in a proof outline, some of the intermediate assertions used in the
correctness proof are retained and loop invariants are always retained. Note
that every standard proof outline {p} S∗ {q} for partial correctness starts
with exactly two assertions, namely p and pre(S). If p ≡ pre(S), then we
drop p from this proof outline and consider the resulting proof outline also
to be standard.

Note that a standard proof outline is not minimal, in the sense that some
assertions used in it can be removed. For example, the assertion {p ∧ B} in
the context {inv : p} while B do {p ∧ B} S od {q} can be deduced. Stan-
dard proof outlines are needed in the chapters on parallel programs.

By studying proofs of partial correctness in the form of standard proof
outlines we do not lose any generality, as the following theorem shows. Recall
that ⊢itPW stands for provability in the system PW augmented by the set of
all true assertions.

Theorem 3.2.

(i) Let {p} S∗ {q} be a proof outline for partial correctness. Then ⊢itPW

{p} S {q}.
(ii) If ⊢itPW {p} S {q}, there exists a standard proof outline for partial

correctness of the form {p} S∗ {q}.

Proof. (i) Straightforward by induction on the structure of the programs.
For example, if {p} S∗

1 ; S∗
2 {q} is a proof outline then for some r both

{p} S∗
1 {r} and {r} S∗

2 {q} are proof outlines. By the induction hypothe-
sis ⊢PW {p} S1 {r} and ⊢PW {r} S2 {q}; so ⊢PW {p} S1; S2 {q} by the
composition rule. Other cases are equally simple to prove.

(ii) Straightforward by induction on the length of the proof. For example, if
the last rule applied in the proof of {p} S {q} was the conditional rule, then
by the induction hypothesis there are standard proof outlines for partial
correctness of the forms {p ∧ B} S∗

1 {q} and {p ∧ ¬B} S∗
2 {q}, where S is

if B then S1 else S2 fi. Thus there exists a standard proof outline of the
form {p} S∗ {q}. Other cases are equally simple to prove. ⊓⊔

Also, the proof outlines {p} S∗ {q} enjoy the following useful and intuitive
property: whenever the control of S in a given computation starting in a state
satisfying p reaches a point annotated by an assertion, this assertion is true.
Thus the assertions of a proof outline are true at the appropriate moments.

To state this property we have to abstract from the operational semantics
the notion of program control. To this end we introduce the notation at(T, S).
Informally, at(T, S) is the remainder of S that is to be executed when the
control is at subprogram T . For example, for

S ≡ while x ≥ 0 do if y ≥ 0 then x := x − 1 else y := y − 2 fi od,

and
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T ≡ y := y − 2,

the following should hold: at(T, S) ≡ at(y := y−2, S) ≡ y := y−2;S because
once T has terminated, loop S must be reiterated.

More precisely, we introduce the following definition.

Definition 3.7. Let T be a subprogram of S. We define a program at(T, S)
by the following clauses:

(i) if S ≡ S1; S2 and T is a subprogram of S1, then at(T, S) ≡ at(T, S1);
S2 and if T is a subprogram of S2 then at(T, S) ≡ at(T, S2);

(ii) if S ≡ if B then S1 else S2 fi and T is a subprogram of Si, then
at(T, S) ≡ at(T, Si) (i = 1, 2);

(iii) if S ≡ while B do S′ od and T is a subprogram of S′, then at(T, S)
≡ at(T, S′); S;

(iv) if T ≡ S then at(T, S) ≡ S. ⊓⊔

We can now state the desired theorem.

Theorem 3.3. (Strong Soundness) Let {p} S∗ {q} be a standard proof
outline for partial correctness. Suppose that

< S, σ > →∗ < R, τ >

for some state σ satisfying p, program R and state τ . Then

• if R ≡ at(T, S) for a subprogram T of S, then τ |= pre(T ),
• if R ≡ E then τ |= q.

Proof. It is easy to prove that either R ≡ at(T, S) for a subprogram T of
S or R ≡ E (see Exercise 3.13). In the first case, let r stand for pre(T ); in
the second case, let r stand for q. We need to show τ |= r. The proof is by
induction on the length of the computation. If its length is 0 then p → r and
σ = τ ; so τ |= r since σ |= p.

Suppose now the length is positive. Then for some R′ and τ ′

< S, σ > →∗ < R′, τ ′ > → < R, τ > .

We have now to consider six cases depending on the form of the last transition.
We consider only two representative ones.

(a) Suppose the last transition consists of a successful evaluation of a Boolean
expression B in a conditional statement if B then S1 else S2 fi. Then R′ ≡
at(T ′, S) where T ′ ≡ if B then S1 else S2 fi and R ≡ at(T, S) where T ≡
S1. By the definition of a proof outline

pre(T ′) ∧ B → r.
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By the induction hypothesis τ ′ |= pre(T ′). But by the assumption τ ′ |= B
and τ = τ ′; so τ |= pre(T ′) ∧ B and consequently τ |= r.

(b) Suppose the last transition consists of an execution of an assignment
statement, say u := t. Then R′ ≡ at(u := t, S). By the definition of a proof
outline pre(u := t) → p′[u := t] and p′ → r for some assertion p′. Thus

pre(u := t) → r[u := t].

But by the induction hypothesis τ ′ |= pre(u := t); so τ ′ |= r[u := t]. Also,
M[[u := t]](τ ′) = {τ}; so by the truth of the assignment axiom in the sense
of partial correctness, τ |= r. ⊓⊔

Total Correctness

So far we have only discussed proof outlines for partial correctness. To com-
plete the picture we should take care of the termination of loops. We introduce
the following definition.

Definition 3.8. (Proof Outline: Total Correctness) Let S∗ and S∗∗

stand for program S annotated with assertions, some of them labeled by
the keyword inv, and integer expressions, all labeled by the keyword bd.
The notion of a proof outline for total correctness is defined as for partial
correctness (cf. Definition 3.6), except for formation rule (v) dealing with
loops, which is to be replaced by

(viii)

{p ∧ B} S∗ {p},
{p ∧ B ∧ t = z} S∗∗ {t < z},
p → t ≥ 0

{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

where t is an integer expression and z is an integer variable not occurring in
p, t, B or S∗∗.

Standard proof outlines {p} S∗ {q} for total correctness are defined as for
partial correctness. ⊓⊔

The annotation {bd : t} represents the bound function of the loop
while B do S od. Observe that we do not record in the proof outline the ter-
mination proof, that is, the proof of the formula {p ∧ B ∧ t = z} S {t < z}.
Usually this proof is straightforward and to reconstruct it, exhibiting the
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bound function is sufficient. By formation rule (vii) of Definition 3.6 no an-
notation of the form {inv : p} or {bd : t} may be deleted from a proof outline
for total correctness.

Example 3.7. The following is a proof outline for total correctness of the
integer division program DIV studied in Example 3.4:

{x ≥ 0 ∧ y > 0}
quo := 0; rem := x;
{inv : p′}{bd : rem}
while rem ≥ y do

{p′ ∧ rem ≥ y}
rem := rem − y; quo := quo + 1
{p′}

od
{p′ ∧ rem < y}
{quo · y + rem = x ∧ 0 ≤ rem < y},

where

p′ ≡ quo · y + rem = x ∧ rem ≥ 0 ∧ y > 0.

This proof outline represents the proof given in Example 3.4. It includes
the bound function rem, but it does not include the verification of the last
two premises of the loop II rule corresponding to the correctness formulas
(3.13) and (3.14) in Example 3.5.

We now apply the decomposition rule A1 to DIV and split the proof of
total correctness into a proof of partial correctness and a proof of termination.
To prove

{x ≥ 0 ∧ y > 0} DIV {quo · y + rem = x ∧ 0 ≤ rem < y} (3.24)

in the sense of partial correctness, let

{x ≥ 0 ∧ y ≥ 0} DIV ∗ {quo · y + rem = x ∧ 0 ≤ rem < y}

denote the proof outline shown in Example 3.6. We strengthen the precon-
dition by an initial application of the consequence rule, yielding the proof
outline

{x ≥ 0 ∧ y > 0}
{x ≥ 0 ∧ y ≥ 0}
DIV ∗

{quo · y + rem = x ∧ 0 ≤ rem < y},

which proves (3.24) in the sense of partial correctness. To show termination
we prove
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{x ≥ 0 ∧ y > 0} DIV {true} (3.25)

in the sense of total correctness by the following proof outline with a simpler
loop invariant than p′:

{x ≥ 0 ∧ y > 0}
quo := 0; rem := x;
{inv : rem ≥ 0 ∧ y > 0}{bd : rem}
while rem ≥ y do

{rem ≥ 0 ∧ y > 0 ∧ rem ≥ y}
rem := rem − y; quo := quo + 1
{rem ≥ 0 ∧ y > 0}

od
{true}.

Together, (3.24) and (3.25) establish the desired total correctness result for
DIV . ⊓⊔

Proof outlines are well suited for the documentation of programs because
they allow us to record the main assertions that were used to establish the
correctness of the programs, in particular the invariants and bound functions
of loops.

3.5 Completeness

A natural question concerning any proof system is whether it is strong enough
for the purpose at hand, that is, whether every semantically valid (i.e., true)
formula can indeed be proved. This is the question of completeness of a proof
system. Here we are interested in the completeness of the proof systems PW
and TW. We introduce the following more general definition.

Definition 3.9. Let G be a proof system allowing us to prove correctness
formulas about programs in a certain class C. We say that G is complete for
partial correctness of programs in C if for all correctness formulas {p} S {q}
about programs S in C

|= {p} S {q} implies ⊢G {p} S {q}

and that G is complete for total correctness of programs in C if for all cor-
rectness formulas {p} S {q} about programs S in C

|=tot {p} S {q} implies ⊢G {p} S {q}. ⊓⊔

Thus completeness is the counterpart of soundness as defined in Defini-
tion 3.4.



86 3 while Programs

There are several reasons why the proof systems PW and TW could be
incomplete.

(1) There is no complete proof system for the assertions used in the rule of
consequence.

(2) The language used for assertions and expressions is too weak to describe
the sets of states and the bound functions needed in the correctness
proofs.

(3) The proof rules presented here for while programs are not powerful
enough.

Obstacle (1) is indeed true. Since we interpret our assertions over a fixed
structure containing the integers, Gödel’s Incompleteness Theorem applies
and tells us that there cannot be any complete proof system for the set of all
true assertions. We circumvent this problem by simply adding all true asser-
tions to the proof systems PW and TW. As a consequence, any completeness
result will be in fact a completeness relative to the truth of all assertions.

Obstacle (2) is partly true. On the one hand, we see that all sets of states
needed in correctness proofs can be defined by assertions. However, we also
observe that the syntax for expressions as introduced in Chapter 2 is not
powerful enough to express all necessary bound functions.

Thus our question about completeness of the proof systems PW and TW
really address point (3). We can show that the axioms and proof rules given in
these proof systems for the individual program constructs are indeed powerful
enough. For example, we show that together with the consequence rule the
loop II rule is sufficient to prove all true total correctness formulas about
while programs.

First let us examine the expressiveness of the assertions and expressions.
For this purpose we introduce the notion of weakest precondition originally
due to Dijkstra [1975].

Definition 3.10. Let S be a while program and Φ a set of proper states.
We define

wlp(S,Φ) = {σ | M[[S]](σ) ⊆ Φ}

and
wp(S,Φ) = {σ | Mtot [[S]](σ) ⊆ Φ}.

We call wlp(S,Φ) the weakest liberal precondition of S with respect to Φ and
wp(S,Φ) the weakest precondition of S with respect to Φ. ⊓⊔

Informally, wlp(S,Φ) is the set of all proper states σ such that whenever
S is activated in σ and properly terminates, the output state is in Φ. In turn,
wp(S,Φ) is the set of all proper states σ such that whenever S is activated
in σ, it is guaranteed to terminate and the output state is in Φ.

It can be shown that these sets of states can be expressed or defined by
assertions in the following sense.
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Definition 3.11. An assertion p defines a set Φ of states if the equation
[[p]] = Φ holds. ⊓⊔

Theorem 3.4. (Definability) Let S be a while program and q an asser-
tion. Then the following holds.

(i) There is an assertion p defining wlp(S, [[q]]), i.e. with [[p]] = wlp(S, [[q]]).
(ii) There is an assertion p defining wp(S, [[q]]), i.e. with [[p]] = wp(S, [[q]]).

Proof. A proof of this theorem for a similar assertion language can be found
in Appendix B of de Bakker [1980] (written by J. Zucker). We omit the proof
details and mention only that its proof uses the technique of Gödelization,
which allows us to code computations of programs by natural numbers in an
effective way. Such an encoding is possible due to the fact that the assertion
language includes addition and multiplication of natural numbers. ⊓⊔

By the Definability Theorem 3.4 we can express weakest precondi-
tions syntactically. Hence we adopt the following convention: for a given
while program S and a given assertion q we denote by wlp(S, q) some as-
sertion p for which the equation in (i) holds, and by wp(S, q) some assertion
p for which the equation in (ii) holds. Note the difference between wlp(S, q)
and wlp(S,Φ). The former is an assertion whereas the latter is a set of states;
similarly with wp(S, q) and wp(S,Φ). Note that wlp(S, q) and wp(S, q) are
determined only up to logical equivalence.

The following properties of weakest preconditions can easily be established.

Lemma 3.5. (Weakest Liberal Precondition) The following statements
hold for all while programs and assertions:

(i) wlp(skip, q) ↔ q,
(ii) wlp(u := t, q) ↔ q[u := t],
(iii) wlp(S1; S2, q) ↔ wlp(S1, wlp(S2, q)),
(iv) wlp(if B then S1 else S2 fi, q) ↔

(B ∧ wlp(S1, q)) ∨ (¬B ∧ wlp(S2, q)),
(v) wlp(S, q) ∧ B → wlp(S1, wlp(S, q)),

where S ≡ while B do S1 od,
(vi) wlp(S, q) ∧ ¬B → q,

where S ≡ while B do S1 od,
(vii) |= {p} S {q} iff p → wlp(S, q).

Proof. See Exercise 3.15. ⊓⊔

Note that for a given loop S ≡ while B do S1 od the clauses (v) and
(vii) imply

|= {wlp(S, q) ∧ B} S1 {wlp(S, q)}.

In other words, wlp(S, q) is a loop invariant of S.
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Lemma 3.6. (Weakest Precondition) The statements (i)–(vii) of the
Weakest Liberal Precondition Lemma 3.5 hold when wlp is replaced by wp
and |= by |=tot .

Proof. See Exercise 3.16. ⊓⊔

Using the definability of the weakest precondition as stated in the Defin-
ability Theorem 3.4 we can show the completeness of the proof system PW.
For the completeness of TW, however, we need the additional property that
also all bound functions can be expressed by suitable integer expressions.

Definition 3.12. For a loop S ≡ while B do S1 od and an integer variable
x not occurring in S consider the extended loop

Sx ≡ x := 0; while B do x := x + 1; S1 od

and a proper state σ such that the computation of S starting in σ terminates,
that is, Mtot [[S]](σ) 6= {⊥}. Then Mtot [[Sx]](σ) = {τ} for some proper state
τ 6= ⊥. By iter(S, σ) we denote the value τ(x), which is a natural number. ⊓⊔

Intuitively, iter(S, σ) is the number of iterations of the loop S occurring in
the computation of S starting in σ. For a fixed loop S we can view iter(S, σ) as
a partially defined function in σ that is defined whenever Mtot [[S]](σ) 6= {⊥}
holds. Note that this function is computable. Indeed, the extended loop Sx

can be simulated by a Turing machine using a counter x for counting the
number of loop iterations.

Definition 3.13. The set of all integer expressions is called expressive if for
every while loop S there exists an integer expression t such that

σ(t) = iter(S, σ)

holds for every state σ with Mtot [[S]](σ) 6= {⊥}. ⊓⊔

Thus expressibility means that for each loop the number of loop iterations
can be expressed by an integer expression. Whereas the assertions introduced
in Chapter 2 are powerful enough to guarantee the definability of the weakest
preconditions (the Definability Theorem 3.4), the integer expressions intro-
duced there are too weak to guarantee expressibility.

Using the function symbols + and · for addition and multiplication, we can
represent only polynomials as integer expressions. However, it is easy to write
a terminating while loop S where the number of loop iterations exhibit an
exponential growth, say according to the function iter(S, σ) = 2σ(x). Then
iter(S, σ) cannot be expressed using the integer expressions of Chapter 2.

To guarantee expressibility we need an extension of the set of integer ex-
pressions which allows us to express all partially defined computable functions
and thus in particular iter(S, σ). We omit the details of such an extension.
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We can now prove the desired theorem.

Theorem 3.5. (Completeness)

(i) The proof system PW is complete for partial correctness of
while programs.

(ii) Assume that the set of all integer expressions is expressive. Then the
proof system TW is complete for total correctness of while programs.

Proof.
(i) Partial correctness. We first prove that for all S and q,

⊢PW {wlp(S, q)} S {q}. (3.26)

We proceed by induction on the structure of S. To this end we use clauses
(i)–(vi) of the Weakest Liberal Precondition Lemma 3.5.

Induction basis. The cases of the skip statement and the assignment are
straightforward.

Induction step. The case of sequential composition is easy. We con-
sider in more detail the case of the conditional statement S ≡
if B then S1 else S2 fi. We have by the Weakest Liberal Precondition
Lemma 3.5(iv)

wlp(S, q) ∧ B → wlp(S1, q) (3.27)

and
wlp(S, q) ∧ ¬B → wlp(S2, q). (3.28)

By the induction hypothesis,

⊢PW {wlp(S1, q)} S1 {q} (3.29)

and
⊢PW {wlp(S2, q)} S2 {q}. (3.30)

Using now the consequence rule applied respectively to (3.27) and (3.29), and
(3.28) and (3.30), we obtain

⊢PW {wlp(S, q) ∧ B} S1 {q}

and
⊢PW {wlp(S, q) ∧ ¬B} S2 {q},

from which (3.26) follows by the conditional rule.
Finally, consider a loop S ≡ while B do S1 od. We have by the induction

hypothesis
⊢PW {wlp(S1, wlp(S, q))} S1 {wlp(S, q)}.

By the Weakest Liberal Precondition Lemma 3.5(v) and the consequence rule

⊢PW {wlp(S, q) ∧ B} S1 {wlp(S, q)};
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so by the loop rule

⊢PW {wlp(S, q)} S {wlp(S, q) ∧ ¬B}.

Finally, by the Weakest Liberal Precondition Lemma 3.5(vi) and the conse-
quence rule

⊢PW {wlp(S, q)} S {q}.

This proves (3.26). With this preparation we can now prove the completeness
of PW. Suppose

|= {p} S {q}.

Then by the Weakest Liberal Precondition Lemma 3.5(vii)

p → wlp(S, q);

so by (3.26) and the consequence rule

⊢PW {p} S {q}.

(ii) Total correctness.We proceed somewhat differently than in (i) and prove
directly by induction on the structure of S that

|=tot {p} S1 {q} implies ⊢TW {p} S1 {q}.

The proof of the cases skip, assignment, sequential composition and condi-
tional statement is similar to that of (i) but uses the Weakest Precondition
Lemma 3.6 instead of the Weakest Liberal Precondition Lemma 3.5.

The main difference lies in the treatment of the loop S ≡
while B do S1 od. Suppose |=tot {p} S {q}. It suffices to prove

⊢TW {wp(S, q)} S {q} (3.31)

because —similar to (i) and using the Weakest Precondition Lemma 3.6(vii)
and the consequence rule— this implies ⊢TW {p} S1 {q} as desired. By the
Weakest Precondition Lemma 3.6(vii)

|=tot {wp(S1, wp(S, q))} S1 {wp(S, q)};

so by the induction hypothesis

⊢TW {wp(S1, wp(S, q))} S1 {wp(S, q)}.

Thus by the Weakest Precondition Lemma 3.6(v)

⊢TW {wp(S, q) ∧ B} S1 {wp(S, q)}. (3.32)

We intend now to apply the loop II rule. In (3.32) we have already found
a loop invariant, namely wp(S, q), but we also need an appropriate bound
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function. By the assumption about the expressiveness of the set of all integer
expressions there exists an integer expression t such that σ(t) = iter(S, σ)
for all proper states σ with M[[S]](σ) 6= {⊥}. By the definition of wp(S, q)
and t,

|=tot {wp(S, q) ∧ B ∧ t = z} S1 {t < z}, (3.33)

where z is an integer variable that does not occur in t, B and S, and

wp(S, q) → t ≥ 0. (3.34)

By the induction hypothesis (3.33) implies

⊢TW {wp(S, q) ∧ B ∧ t = z} S1 {t < z}. (3.35)

Applying the loop II rule to (3.32), (3.35) and (3.34) yields

⊢TW {wp(S, q)} S {wp(S, q) ∧ ¬B}. (3.36)

Now (3.31) follows from (3.36) by the Weakest Precondition Lemma 3.6(vi)
and the consequence rule. ⊓⊔

Similar completeness results can be established for various other proof
systems considered in subsequent chapters. All these proofs proceed by in-
duction on the structure of the programs and use intermediate assertions
constructed by means of the weakest (liberal) precondition or similar seman-
tics concepts. However, as the proof systems become more complicated, so
do their completeness proofs.

In fact, for parallel and distributed programs the proofs become quite
involved and tedious. We do not give these proofs and concentrate instead
on the use of these proof systems for verifying programs, which is the main
topic of this book.

3.6 Parallel Assignment

An assignment u := t updates only a single or subcripted variable u. Often it
is convenient to update several variables in parallel, in one step. To this end,
we introduce the parallel assignment which updates a list of variables by the
values of a corresponding list of expressions. For example, using a parallel
assignment we can write

x, y := y, x

to express that the values of the variables x and y are swapped in a single
step. With ordinary assigments we need an additional variable, say h, to
temporarily store the value of x. Then, the sequential composition



92 3 while Programs

h := x; x := y; y := h

of assignments has the same effect as the parallel assignment above, except
for the variable h. This shows the usefulness of the parallel assignment. Later
in Chapter 5, we use it to model the semantics of the call-by-value parameter
mechanism in recursive procedures.

In this section, we briefly introduce syntax, semantics, and an axiom for
the verification of parallel assignments.

Syntax

We extend the syntax of while programs S by the following clause for parallel
assignments:

S ::= x̄ := t̄,

where x̄ = x1, . . . , xn is a non-empty list of distinct simple variables of types
T1, . . . , Tn and t̄ = t1, . . . , tn a corresponding list of expressions of types
T1, . . . , Tn.

Semantics

The operational semantics of a parallel assignment is defined by the follow-
ing variant of the transition axiom (ii) for ordinary assignments, stated in
Section 3.2:

(ii ′) < x̄ := t̄, σ > → < E, σ[x̄ := σ(t̄)] >

Thus semantically, a parallel assignment is modelled by a simultaneous up-
date of the state. Just as the ordinary assignment, a parallel assignment
terminates in one transition step.

As in Section 3.2 we define the input-output semantics of partial and total
correctness, referring to the above transition axiom in the case of a parallel
assignment. In particular, we have

N [[x̄ := t̄]](σ) = {σ[x̄ := σ(t̄)]}

for both N = M and N = Mtot .

Example 3.8. Now we can make precise the semantic relationship between
the two programs for the swap operation:

N [[x, y := y, x]](σ) = N [[h := x; x := y; y := h]](σ) mod {h} (3.37)
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for both N = M and N = Mtot . In the following we prove this relationship.
By the semantics of parallel assignments, the left-hand side of (3.37) yields

N [[x, y := y, x]](σ) = {σx,y},

where σx,y = σ[x, y := σ(y), σ(x)]. By definition, the simultaneous update
can be serialized as follows:

σx,y = σx[y := σ(x)],

σx = σ[x := σ(y)].

In turn, the sequential composition of the three assignments of the right-hand
side of (3.37) yields

N [[h := x; x := y; y := h]](σ) = {σh,x,y},

where we use the following abbreviations:

σh,x,y = σh,x[y := σh,x(h)],

σh,x = σh[x := σh(y)],

σh = σ[h := σ(x)].

Thus to prove (3.37), it suffices to show the following three claims:

1. σx,y(x) = σh,x,y(x),
2. σx,y(y) = σh,x,y(y),
3. σx,y(v) = σh,x,y(v) for all simple and array variables v different from x, y

and h.

The proofs of these claims use the Coincidence Lemma 2.3 and the definition
of an update of a state.

Re: 1. We calculate:

σx,y(x) = σx(x) = σ(y) = σh(y) = σh,x(x) = σh,x,y(x).

Re: 2. We calculate:

σx,y(y) = σ(x) = σh(h) = σh,x(h) = σh,x,y(y).

Re: 3. We calculate:

σx,y(v) = σ(v) = σh,x,y(v).

This completes the proof of (3.37). ⊓⊔
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Verification

The assignment axiom introduced in Section 3.3, axiom 2, can be easily
adapted to parallel assignment, using simultaneous substitution:

AXIOM 2′: PARALLEL ASSIGNMENT

{p[x̄ := t̄]} x̄ := t̄ {p}

This axiom is sound for both partial and total correctness. We call the
corresponding proof systems PW ′ and TW ′, that is, PW and TW extended
by axiom 2′, respectively. Definitions 3.6 and 3.8 of proof outlines for par-
tial and total correctness, respectively, carry over to programs with parallel
assignments in a straightforward way.

Example 3.9. For the program S ≡ x, y := y, x we prove the correctness
formula

{x = x0 ∧ y = y0} S {x = y0 ∧ y = x0}

in the proof system PW ′. Here the fresh variables x0 and y0 are used to
express the swap property of S. In the precondition x0 and y0 freeze the
initial values of the variables x and y, respectively, so that these values can
be compared with the new values of these variables in the postcondition. We
see that the values of x and y are swapped.

We represent the correctness proof in PW ′ as a proof outline:

{x = x0 ∧ y = y0}
{y = y0 ∧ x = x0}

S
{x = y0 ∧ y = x0}.

The initial application of the consequence rule exploits the commutativity
of logical conjunction. Then axiom 2′ is applied to S with the substitution
[x, y := y, x]. ⊓⊔

3.7 Failure Statement

In this section we introduce a simple statement the execution of which can
cause a failure, also called an abortion. The computation of a program with
such a statement can either yield a final state, diverge or, what is new, ter-
minate in a failure.
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Syntax

We extend the syntax of while programs by the following clause for a failure
statement :

S ::= if B → S1 fi,

where B is a Boolean expression, called the guard of S, and S1 a statement.
We refer to the resulting programs as failure admitting programs.

The statement if B → S fi is executed as follows. First the guard B is eval-
uated. If B is true, S is executed; otherwise a failure arises. So the execution
of the statement if B → S fi crucially differs from that of if B then S fi.
Namely, if B evaluates to false, the latter statement simply terminates.

The fact that the failure statement fails rather than terminates if its guard
evaluates to false allows us to program checks for undesired conditions. For
example, to avoid integer division by 0, we can write

if y 6= 0 → x := x div y fi.

In case of y = 0 this program raises a failure. By contrast, the conditional
statement

if y 6= 0 then x := x div y fi

always properly terminates and does not raise any exception.
In the same way, we may use the failure statement to check whether an

array is accessed only within a certain section. For example, executing

if 0 ≤ i < n → x := a[i] fi

raises a failure if the array a is accessed outside of the section a[0 : n − 1].
Thus the failure statement can be used to model bounded arrays.

As a final example consider the problem of extending the parallel assign-
ment to the subscripted variables. A complication then arises that some par-
allel assignments can lead to a contradiction, for example a[s1], a[s2] := t1, t2,
when s1 and s2 evaluate to the same value while t1 and t2 evaluate to dif-
ferent values. The failure statement can then be used to catch the error. For
example, we can rewrite the above problematic parallel assignment to

if s1 6= s2 ∨ t1 = t2 → a[s1], a[s2] := t1, t2 fi

that raises a failure in the case when the parallel assignment cannot be exe-
cuted.
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Semantics

The operational semantics of a failure statement is defined by the following
two transition axioms:

(iv ′) < if B → S fi, σ > → < S, σ > where σ |= B,

(v ′) < if B → S fi, σ > → < E, fail > where σ |= ¬B,

that should be compared with the transition axioms (iv) and (v) concerned
with the conditional statement if B then S fi.

Here fail is a new exceptional state representing a runtime detectable
failure or abortion. It should be contrasted with ⊥, representing divergence,
which in general cannot be detected in finite time. Note that configurations
of the form < S, fail > have no successor in the transition relation → .

Definition 3.14. Let σ be a proper state.

(i) A configuration of the form < S, fail > is called a failure.
(ii) We say that a failure admitting program S can fail from σ if there is a

computation of S that starts in σ and ends in a failure. ⊓⊔

Note that the Absence of Blocking Lemma 3.2 does not hold any more for
failure admitting programs because failures block the computation.

The partial correctness semantics of M[[S]] of the failure admitting pro-
gram S is defined as before. However, the total correctness semantics is now
defined by taking into account the possibility of a failure. Given a proper
state σ we put

Mtot [[S]](σ) = M[[S]](σ)
∪ {⊥ | S can diverge from σ}
∪ {fail | S can fail from σ}.

This definition suggests that a failure admitting program can yield more than
one outcome. However, this is obviously not the case since the Determinism
Lemma 3.1 still holds and consequently Mtot [[S]](σ) has exactly one element,
like in the case of the while programs.

Verification

The notions of partial and total correctness of the failure admitting programs
are defined in the familiar way using the semantics M and Mtot. For example,
total correctness is defined as follows:

|=tot {p} S {q} if Mtot [[S]]([[p]]) ⊆ [[q]].
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Note that by definition, fail, ⊥ 6∈ [[q]] holds; so |=tot {p} S {q} implies that
S neither fails nor diverges when started in a state satisfying p.

To prove correctness of the failure admitting programs we introduce two
proof rules. In the following proof rule for partial correctness we assume that
the guard B evaluates to true when S is executed.

RULE 4 ′: FAILURE
{p ∧ B} S {q}

{p} if B → S fi {q}

In contrast, in the following proof rule for total correctness we also have
to show that the precondition p implies that the guard B evaluates to true,
thus avoiding a failure.

RULE 4 ′′: FAILURE II

p → B, {p} S {q}

{p} if B → S fi {q}

We have the following counterpart of the Soundness Theorem 3.1.

Theorem 3.6. (Soundness)

(i) The proof system PW augmented by the failure rule is sound for partial
correctness of failure admitting programs.

(ii) The proof system TW augmented by the failure II rule is sound for total
correctness of failure admitting programs.

Proof. See Exercise 3.6. ⊓⊔

We shall discuss other statements that can cause a failure in Chapters 6
and 10.

3.8 Auxiliary Axioms and Rules

Apart from using proof outlines the presentation of correctness proofs can
be simplified in another way —by means of auxiliary axioms and rules. They
allow us to prove certain correctness formulas about the same program sep-
arately and then combine them. This can lead to a different organization of
the correctness proof.

In the case of while programs these axioms and rules for combining cor-
rectness formulas are not necessary, in the sense that their use in the correct-
ness proof can be eliminated by applying other rules. This is the consequence
of the Completeness Theorem 3.5. That is why these rules are called auxiliary
rules.
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Apart from the decomposition rule A1 introduced in Section 3.3, the fol-
lowing auxiliary axioms and rules are used in proofs of partial and total
correctness for all classes of programs considered in this book.

AXIOM A2: INVARIANCE
{p} S {p}

where free(p) ∩ change(S) = ∅.

RULE A3: DISJUNCTION

{p} S {q}, {r} S {q}

{p ∨ r} S {q}

RULE A4: CONJUNCTION

{p1} S {q1}, {p2} S {q2}

{p1 ∧ p2} S {q1 ∧ q2}

RULE A5: ∃-INTRODUCTION

{p} S {q}

{∃x : p} S {q}

where x does not occur in S or in free(q).

RULE A6: INVARIANCE

{r} S {q}

{p ∧ r} S {p ∧ q}

where free(p) ∩ change(S) = ∅.

RULE A7: SUBSTITUTION

{p} S {q}

{p[z̄ := t̄]} S {q[z̄ := t̄]}

where ({z̄} ∩ var(S)) ∪ (var(t̄) ∩ change(S)) = ∅.

Here and elsewhere {z̄} stands for the set of variables present in the se-
quence z̄ and var(t̄) for the set of all simple and array variables that occur in
the expressions of the sequence t̄. (So alternatively we can write var(z̄) for
({z̄}.)

Axiom A2 is true for partial correctness for all programs considered in this
book and rules A3–A7 are sound for both partial and total correctness for
all programs considered in this book. To state this property we refer below
to an arbitrary program S, with the understanding that semantics N [[S]] of
such a program S is a function
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N [[S]] : Σ →P(Σ ∪ {⊥, fail,∆})

that satisfies the Change and Access Lemma 3.4. This lemma holds for all
programs considered in this book and any semantics.

Theorem 3.7. (Soundness of Auxiliary Axioms and Rules)

(i) Axiom A2 is true for partial correctness of arbitrary programs.
(ii) Proof rules A3–A7 are sound for partial correctness of arbitrary pro-

grams.
(iii) Proof rules A3–A7 are sound for total correctness of arbitrary programs.

Proof. See Exercise 3.17. ⊓⊔

Clearly, other auxiliary rules can be introduced but we do not need them
until Chapter 11 where some new auxiliary rules are helpful.

3.9 Case Study: Partitioning an Array

In this section we investigate the problem of partitioning an array. It was
originally formulated and solved by Hoare [1962] as part of his algorithm
Quicksort, which we shall study later in Chapter 5. Consider an array a of
type integer → integer and integer variables m, f, n such that m ≤ f ≤ n
holds. The task is to construct a program PART that permutes the elements
in the array section a[m : n] and computes values of the three variables pi, le
and ri standing for pivot, left and right elements such that upon termination
of PART the following holds:

• pi is the initial value of a[f ],
• le > ri and the array section a[m : n] is partitioned into three subsections

of elements,

– those with values of at most pi (namely a[m : ri]),
– those equal to pi (namely a[ri + 1 : le − 1]), and
– those with values of at least pi (namely a[le : n]),

see Figure 3.1,
• the sizes of the subsections a[m : ri] and a[le : n] are strictly smaller than

the size of the section a[m : n], i.e., ri − m < n − m and n − le < n − m.

To illustrate the input/output behaviour of PART we give two examples.

1. First consider as input the array section

a[m : n] = (2, 3, 7, 1, 4, 5, 4, 8, 9, 7)
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Fig. 3.1 Array section a[m : n] partitioned into three subsections.

with m = 1, n = 10 and f = 7. Then PART computes the values
le = 6, ri = 4 and pi = 4, and permutes the array section using the pivot
element pi into a[m : n] = (2, 3, 4, 1, 4, 5, 7, 8, 9, 7). Thus the array section
is partitioned into a[m : ri] = (2, 3, 4, 1), a[ri + 1 : le − 1] = (4), and
a[le : n] = (5, 7, 8, 9, 7).

2. Second consider as input the array section a[m : n] = (5, 6, 7, 9, 8) with
m = 2, n = 6 and f = 2. Then PART computes the values le = 2, ri = 1
and pi = 5, and in this example leaves the array section unchanged as
a[m : n] = (5, 6, 7, 9, 8) using the pivot element pi. In contrast to the first
example, ri < m holds. So the value of ri lies outside the interval [m : n]
and the subsection a[m : ri] is empty. Thus the array section is partitioned
into a[m : ri] = (), a[ri + 1 : le − 1] = (5), and a[le : n] = (6, 7, 9, 8).

To formalize the permutation property of PART , we consider an array β
of type integer → integer which will store a bijection on N and an interval
[x : y] and require that β leaves a unchanged outside this interval. This
is expressed by the following bijection property that uses β and the integer
variables x and y as parameters:

bij(β, x, y) ≡ β is a bijection on N ∧ ∀ i 6∈ [x : y] : β[i] = i,

where β is a bijection on N if β is surjective and injective on N , i.e., if

(∀y ∈ N ∃x ∈ N : β(x) = y) ∧ ∀x1, x2 ∈ N : (x1 6= x2 → β(x1) 6= β(x2)).

Note that the following implications hold:

bij(β, x, y) → ∀ i ∈ [x : y] : β[i] ∈ [x : y], (3.38)

bij(β, x, y) ∧ x′ ≤ x ∧ y ≤ y′ → bij(β, x′, y′). (3.39)

Implication (3.38) states that β permutes all elements of interval [x : y] only
inside that interval. Implication (3.39) states that the bijection property is
preserved when the interval in enlarged.

We use β to compare the array a with an array a0 of the same type as
a that freezes the initial value of a. By quantifying over β, we obtain the
desired permutation property :
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perm(a, a0, [x : y]) ≡ ∃β : (bij(β, x, y) ∧ ∀ i : a[i] = a0[β[i]]). (3.40)

Altogether, the program PART should satisfy the correctness formula

{m ≤ f ≤ n ∧ a = a0}

PART (3.41)

{perm(a, a0, [m : n]) ∧

pi = a0[f ] ∧ le > ri ∧

(∀ i ∈ [m : ri] : a[i] ≤ pi) ∧

(∀ i ∈ [ri + 1 : le − 1] : a[i] = pi) ∧

(∀ i ∈ [le : n] : pi ≤ a[i]) ∧

ri − m < n − m ∧ n − le < n − m}

in the sense of total correctness, where m, f, n, a0 6∈ change(PART ).

The following program is from Foley and Hoare [1971] except that for
convenience we use parallel assigments.

PART ≡ pi := a[f ];
le, ri := m,n;
while le ≤ ri do

while a[le] < pi do
le := le + 1

od;
while pi < a[ri] do

ri := ri − 1
od;
if le ≤ ri then

swap(a[le], a[ri]);
le, ri := le + 1, ri − 1

fi
od

Here for two given simple or subscripted variables u and v the program
swap(u, v) is used to swap the values of u and v. So we stipulate that the
correctness formula

{x = u ∧ y = v} swap(u, v) {x = v ∧ y = u}

holds in the sense of partial and total correctness, where x and y are fresh
variables.

To prove (3.41) in a modular fashion, we shall first prove the following
partial correctness properties P0–P4 separately:



102 3 while Programs

P0 {a = a0} PART {pi = a0[f ]},

P1 {true} PART {ri ≤ n ∧ m ≤ le},

P2 {x′ ≤ m ∧ n ≤ y′ ∧ perm(a, a0, [x
′ : y′])}

PART

{x′ ≤ m ∧ n ≤ y′ ∧ perm(a, a0, [x
′ : y′])},

P3 {true}

PART

{ le > ri ∧

(∀ i ∈ [m : ri] : a[i] ≤ pi) ∧

(∀ i ∈ [ri + 1 : le − 1] : a[i] = pi) ∧

(∀ i ∈ [le : n] : pi ≤ a[i])},

P4 {m ≤ f ≤ n} PART {m < le ∧ ri < n}.

Property P0 expresses that upon termination pi holds the initial values of
the array element a[f ]. Property P1 states bounds for ri and le. We remark
that le ≤ n and m ≤ ri need not hold upon termination. Note that property
P2 implies by the substitution rule A7 with the substitution [x′, y′ := m,n]
and the consequence rule

{perm(a, a0, [m : n])} PART {perm(a, a0, [m : n])}.

Since a = a0 → perm(a, a0, [m : n]), a further application of the consequence
rule yields

{a = a0} PART {perm(a, a0, [m : n])}.

Thus PART permutes the array section a[m : n] and leaves other elements
of a unchanged. The more general formulation in P2 will be helpful when
proving the correctness of the Quicksort procedure in Chapter 5. Property
P3 formalizes the partition property of PART . Note that the postcondition
of property P4 is equivalent to

ri − m < n − m ∧ n − le < n − m,

which is needed in the termination proof of the Quicksort procedure: it states
that the subsections a[m : ri] and a[le : n] are strictly smaller that the section
a[m : n].

By the conjunction rule, we deduce (3.41) in the sense of partial correct-
ness from P0, the above consequence of P2, P3, and P4. Then to prove
termination of PART we show that

T {m ≤ f ≤ n} PART {true}



3.9 Case Study: Partitioning an Array 103

holds in the sense of total correctness. By the decomposition rule A1, this
yields (3.41) in the sense of total correctness, as desired.

Thus it remains to prove P0–P4 and T.

Preparatory Loop Invariants

We first establish some invariants of the inner loops in PART . For the first
inner loop

• any assertion p with le 6∈ free(p),
• m ≤ le,
• A(le) ≡ ∃ i ∈ [le : n] : pi ≤ a[i]

are invariants. For the second inner loop

• any assertion q with ri 6∈ free(q),
• ri ≤ n,
• B(ri) ≡ ∃ j ∈ [m : ri] : a[j] ≤ pi

are invariants. The claims about p and q are obvious. The checks for m ≤ le
and ri ≤ n are also straightforward. The remaining two invariant properties
are established by the following two proof outlines for partial correctness:

{inv : A(le)}

while a[le] < pi do

{A(le) ∧ a[le] < pi}

{A(le + 1)}

le := le + 1

{A(le)}

od

{A(le)}

{inv : B(ri)}

while pi < a[ri] do

{B(ri) ∧ pi < a[ri]}

{B(ri − 1)}

ri := ri − 1

{B(ri)}

od

{B(ri)}

Note that the implications

A(le) → le ≤ n and B(ri) → m ≤ ri (3.42)

hold. Thus A(le) ∧ B(ri) → ri − le ≥ m − n.
Further, for both inner loops the assertion

I3 ≡ a[m : le − 1] ≤ pi ≤ a[ri + 1 : n], (3.43)

which is a shorthand for

∀ i ∈ [m : le − 1] : a[i] ≤ pi ∧ ∀ i ∈ [ri + 1 : n] : pi ≤ a[i],
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is an invariant, as the following proof outline for partial correctness shows:

{inv : I3}

while a[le] < pi do

{I3 ∧ a[le] < pi}

{a[m : le] ≤ pi ≤ a[ri + 1 : n]}

le := le + 1

{I3}

od;

{inv : I3}

while pi < a[ri] do

{I3 ∧ pi < a[ri]}

{a[m : le − 1] ≤ pi ≤ a[ri : n]}

ri := ri − 1

{I3}

od

{I3}

From these invariants further invariants can be obtained by conjunction.

Proof of Property P0

Clearly, the inital assignment satisfies

{a = a0} pi := a[f ] {pi = a0[f ]}.

Since there are no further assigments to the variable pi in PART , and a0 6∈
change(PART ), the correctness formula

{a = a0} PART {pi = a0[f ]}

holds in the sense of partial correctness. This proves property P0.

Proof of Property P1

The initial parallel assignment to le and ri in PART establishes the assertions
ri ≤ n and m ≤ le. We noticed already that ri ≤ n and m ≤ le are invariants
of the inner loops of PART . Also the final if statement of PART with its
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parallel assignment to le and ri preserves ri ≤ n and m ≤ le. These informal
arguments can be easily combined into a formal proof of property P1.

Proof of Property P2

By a global invariant of a program S we mean an assertion GI for which
there exists a standard proof outline

{p} S∗ {q}

for partial correctness such that for every used assertion r (including p and
q) the implication

r → GI

holds. Thus the assertions used in the proof outline are equivalent or stronger
than GI. This may be needed to establish GI inside the proof outline.

Consider now the permutation property, i.e., that PART permutes the
elements of the array a but leaves a unchanged outside an interval [x′ :
y′] containing [m : n]. Its definition uses the assertion perm(a, a0, [x

′ : y′])
defined in (3.40):

GI ≡ x′ ≤ m ∧ n ≤ y′ ∧ perm(a, a0, [x
′ : y′]).

Since le, ri 6∈ var(GI), we conclude by the previous results on loop invariants
that GI and hence m ≤ le ∧ ri ≤ n ∧ GI are invariants of both inner loops.
Thus the proof outline presented in Figure 3.2 shows that GI is a global
invariant of PART . Thus we have verified property P2 in the sense of partial
correctness.

Proof of Property P3

To show the partition property P3 we consider the assertion (3.43), i.e.,

I3 ≡ a[m : le − 1] ≤ pi ≤ a[ri + 1 : n].

The proof outline for partial correctness given in Figure 3.3 shows that

{true} PART {I3 ∧ le > ri}

holds. Note that after the initialization I3 is trivially satisfied because the
two intervals [m : le−1] and [ri+1 : n] are empty for le = m and ri = n, and
consequently, the two universal quantifications in the expanded definition
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{GI}

pi := a[f ];

{GI}

le, ri := m,n;

{inv : m ≤ le ∧ ri ≤ n ∧ GI}

while le ≤ ri do

{inv : m ≤ le ∧ ri ≤ n ∧ GI}

while a[le] < pi do

le := le + 1

od;

{inv : m ≤ le ∧ ri ≤ n ∧ GI}

while pi < a[ri] do

ri := ri − 1

od;

{m ≤ le ∧ ri ≤ n ∧ GI}

if le ≤ ri then

{m ≤ le ∧ ri ≤ n ∧ GI ∧ le ≤ ri}

{m ≤ le ≤ n ∧ m ≤ ri ≤ n ∧ GI}

swap(a[le], a[ri]);

{m ≤ le ∧ ri ≤ n ∧ GI}

{m ≤ le + 1 ∧ ri − 1 ≤ n ∧ GI}

le, ri := le + 1, ri − 1

{m ≤ le ∧ ri ≤ n ∧ GI}

fi

{m ≤ le ∧ ri ≤ n ∧ GI}

od

{m ≤ le ∧ ri ≤ n ∧ GI}

Fig. 3.2 Proof outline establishing property P2 of PART .

of (3.43) are vacuously true. Further note that I3 ∧ le > ri implies the
postcondition of P3. This proves P3.
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{true}

pi := a[f ];

{true}

le, ri := m,n;

{le = m ∧ ri = n}

{inv : I3}

while le ≤ ri do

{inv : I3}

while a[le] < pi do

le := le + 1

od;

{inv : I3 ∧ pi ≤ a[le]}

while pi < a[ri] do

ri := ri − 1

od;

{I3 ∧ a[ri] ≤ pi ≤ a[le]}

if le ≤ ri then

{I3 ∧ a[ri] ≤ pi ≤ a[le]}

swap(a[le], a[ri]);

{I3 ∧ a[le] ≤ pi ≤ a[ri]}

{a[m : le] ≤ pi ≤ a[ri : n]}

le, ri := le + 1, ri − 1;

{I3}

fi

{I3}

od

{I3 ∧ le > ri}

Fig. 3.3 Proof outline establishing property P3 of PART .

Proof of Property P4

To prove property P4 and to prepare ourselves for the termination proof of
PART we need to establish more loop invariants. Define

I1 ≡ m ≤ n ∧ m ≤ le ∧ ri ≤ n,

I ≡ I1 ∧ A(le) ∧ B(ri),
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where we recall that

A(le) ≡ ∃ i ∈ [le : n] : pi ≤ a[i],

B(ri) ≡ ∃ j ∈ [m : ri] : a[j] ≤ pi.

Then we have the following proof outlines for partial correctness.

(1) For the initial part of PART we prove:

{m ≤ f ≤ n}

pi := a[f ];

{m ≤ f ≤ n ∧ pi = a[f ]}

le, ri := m,n;

{m ≤ f ≤ n ∧ pi = a[f ] ∧ le = m ∧ ri = n}

{I}

(2) For the two inner loops of PART we notice by the previous results on
loop invariants that I and I ∧ pi ≤ a[le] are invariants of the first and
second inner loop, respectively:

{inv : I}

while a[le] < pi do

le := le + 1

od;

{inv : I ∧ pi ≤ a[le]}

while pi < a[ri] do

ri := ri − 1

od

{I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

(3) For the case le < ri of the body of the final if statement of PART we
prove:

{le < ri ∧ I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

swap(a[le], a[ri]);

{le < ri ∧ I1 ∧ A(le) ∧ B(ri) ∧ a[le] ≤ pi ≤ a[ri]}

{I1 ∧ A(le + 1) ∧ B(ri − 1)}

le, ri := le + 1, ri − 1

{I1 ∧ A(le) ∧ B(ri)}

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}
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(4) For the case le = ri of the body of the final if statement of PART we
prove:

{le = ri ∧ I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

{m ≤ le = ri ≤ n ∧ I1}

swap(a[le], a[ri]);

{m ≤ le = ri ≤ n ∧ I1}

le, ri := le + 1, ri − 1

{m ≤ le − 1 = ri + 1 ≤ n ∧ I1}

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

(5) Combining (3) and (4) with the disjunction rule A3, we establish the
following correctness formula:

{le ≤ ri ∧ I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

swap(a[le], a[ri]);

le, ri := le + 1, ri − 1

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

(6) From (5) we obtain for the if statement:

{I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

if le ≤ ri then

{le ≤ ri ∧ I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

swap(a[le], a[ri]);

le, ri := le + 1, ri − 1

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

fi

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

Note that by the following chain of implications

I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le] ∧ le > ri

→ I1 ∧ A(le) ∧ B(ri)

→ I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n),

the implicit else branch is properly taken care of.

(7) Finally, we show that

le > ri ∧ ((m ≤ le − 1 = ri + 1 ≤ n) ∨ (m ≤ le ≤ n ∧ m ≤ ri ≤ n))

implies the postcondition of P4, i.e.,

m < le ∧ ri < n.
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If m ≤ le − 1 = ri + 1 ≤ n we have the implications

m ≤ le − 1 → m < le and ri + 1 ≤ n → ri < m

If m ≤ le ≤ n ∧ m ≤ ri ≤ n we calculate

m

< {m ≤ ri}

−ri

≤ {le > ri}

le

and

ri

< {le > ri}

le

≤ {le ≤ n}

n.

Now we combine (1), (2) and (6) with (3.42) and (7) to arrive at the overall
proof outline for PART given in Figure 3.4. Thus we have verified property
P4 in the sense of partial correctness.

Termination

To prove the termination property

T {m ≤ f ≤ n} PART {true}

we reuse the invariants established for the three loops in the proof outline
of Figure 3.4 and add appropriate bound functions. For the first and second
inner loops we take

t1 ≡ n − le and t2 ≡ ri − m,

respectively, and for the outer loop we choose

t ≡ ri − le + n + 2 − m.

Let us first consider the two inner loops. Recall that I ≡ I1 ∧ A(le) ∧ B(ri).
By (3.42), we obtain I → t1 ≥ 0 and I → t2 ≥ 0. Thus it remains to be
shown that each iteration of the inner loops decreases the value of the bound
functions. But this is obvious since le is incremented and ri is decremented,
respectively, whereas m and n do not change.

More subtle is the argument for the outer loop. Note that

I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n) → t ≥ 0

because on the one hand A(le) ∧ B(ri) implies ri−le ≥ m−n and thus t ≥ 2,
and on the other hand I1 ∧ m ≤ le − 1 = ri + 1 ≤ n implies t = n − m ≥ 0.
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{m ≤ f ≤ n}

pi := a[f ];

le, ri := m,n;

{I1 ∧ A(le) ∧ B(ri)}

{inv : I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

while le ≤ ri do

{I1 ∧ A(le) ∧ B(ri) ∧ le ≤ ri}

{inv : I1 ∧ A(le) ∧ B(ri)}

while a[le] < pi do

le := le + 1

od;

{inv : I1 ∧ A(le) ∧ B(ri) ∧ pi ≤ a[le]}

while pi < a[ri] do

ri := ri − 1

od;

{I1 ∧ A(le) ∧ B(ri) ∧ a[ri] ≤ pi ≤ a[le]}

if le ≤ ri then

swap(a[le], a[ri]);

le, ri := le + 1, ri − 1

fi

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}

od

{I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n) ∧ le > ri}

{le > ri ∧ ((m ≤ le − 1 = ri + 1 ≤ n) ∨ (m ≤ le ≤ n ∧ m ≤ ri ≤ n))}

{m < le ∧ ri < n}

Fig. 3.4 Proof outline establishing property P4 of PART .

To see that the value of t decreases in each iteration of the outer loop, we
first give an informal argument. If upon termination of the two inner loops
the condition le ≤ ri holds, the value of t decreases thanks to the parallel
assignment le, ri := le + 1, ri − 1 inside the conditional statement. If le > ri
holds instead, one of the inner loops must have been executed (because at
the entrance of the outer loop body le ≤ ri was true), thus incrementing le
or decrementing ri.

Formally, we use the following proof outline for total correctness for the
first part of the body of the outer loop:

{t = z ∧ le ≤ ri ∧ I}
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{t = z ∧ z ≥ n + 2 − m ∧ I}

{inv : t ≤ z ∧ z ≥ n + 2 − m ∧ I} {bd : t1}

while a[le] < pi do

{t ≤ z ∧ z ≥ n + 2 − m ∧ I ∧ a[le] < pi}

le := le + 1

{t ≤ z ∧ z ≥ n + 2 − m ∧ I}

od;

{inv : t ≤ z ∧ z ≥ n + 2 − m ∧ I} {bd : t2}

while pi < a[ri] do

{t ≤ z ∧ z ≥ n + 2 − m ∧ I ∧ pi < a[ri]}

ri := ri − 1

{t ≤ z ∧ z ≥ n + 2 − m ∧ I}

od;

{t ≤ z ∧ z ≥ n + 2 − m}

For the subsequent if statement we distinguish the cases le ≤ ri and le > ri.
In the first case we continue with the following proof outline:

{le ≤ ri ∧ t ≤ z ∧ z ≥ n + 2 − m}

if le ≤ ri then

{t ≤ z}

swap(a[le], a[ri]);

{t ≤ z}

le, ri := le + 1, ri − 1

{t < z}

else

{le ≤ ri ∧ t ≤ z ∧ z ≥ n + 2 − m ∧ le > ri}

{false}

skip

{t < z}

fi

{t < z}

For the clarity of the argument we made the else branch of the if statement
visible. In the second case we use the following proof outline:

{le > ri ∧ t ≤ z ∧ z ≥ n + 2 − m}

{le > ri ∧ t < n + 2 − m ≤ z}

if le ≤ ri then

{le > ri ∧ t < n + 2 − m ≤ z ∧ le ≤ ri}
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{false}

swap(a[le], a[ri]);

{false}

le, ri := le + 1, ri − 1

{t < z}

else

{t < z}

skip

{t < z}

fi

{t < z}

The disjunction rule A3 applied to the above cases yields

{t ≤ z ∧ z ≥ n + 2 − m} if . . . fi {t < z},

which by the composition rule completes the proof that the value of t de-
creases in each iteration of the outer loop. To summarize, the proof outline
in Figure 3.5 establishes the total correctness result T.

3.10 Systematic Development of Correct Programs

We now discuss an approach of Dijkstra [1976] allowing us to develop pro-
grams together with their correctness proofs. To this end, we make use of the
proof system TW to guide us in the construction of a program. We follow
here the exposition of Gries [1982]. All correctness formulas are supposed to
hold in the sense of total correctness.

The main issue in Dijkstra’s approach is the development of loops. Suppose
we want to find a program R of the form

R ≡ T ; while B do S od

that satisfies, for a given precondition r and postcondition q, the correctness
formula

{r} R {q}. (3.44)

To avoid trivial solutions for R (cf. the comment after (3.3) in Example 3.4),
we usually postulate that some variables in r and q, say x1, . . ., xn, may not
be modified by R. Thus we require

x1, . . ., xn 6∈ change(R).
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{m ≤ f ≤ n}

pi := a[f ];

le, ri := m,n;

{inv : I1 ∧ ((A(le) ∧ B(ri)) ∨ m ≤ le − 1 = ri + 1 ≤ n)}{bd : t}

while le ≤ ri do

{inv : I}{bd : t1}

while a[le] < pi do

le := le + 1

od;

{inv : I}{bd : t2}

while pi < a[ri] do

ri := ri − 1

od;

if le ≤ ri then

swap(a[le], a[ri]);

le, ri := le + 1, ri − 1;

fi

od

{true}

Fig. 3.5 Proof outline establishing the termination property T of PART .

To prove (3.44), it is sufficient to find a loop invariant p and a bound function
t satisfying the following conditions:

1. p is initially established; that is, {r} T {p} holds;
2. p is a loop invariant; that is, {p ∧ B} S {p} holds;
3. upon loop termination q is true; that is, p ∧ ¬B → q;
4. p implies t ≥ 0; that is, p → t ≥ 0;
5. t is decreased with each iteration; that is, {p ∧ B ∧ t = z} S {t < z}

holds where z is a fresh variable.

Conditions 1–5 can be conveniently presented by the following proof out-
line for total correctness:

{r}
T ;
{inv : p}{bd : t}
while B do
{p ∧ B}
S
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{p}
od
{p ∧ ¬B}
{q}

Now, when only r and q are known, the first step in finding R consists of
finding a loop invariant. One useful strategy is to generalize the postcondition
q by replacing a constant by a variable. The following example illustrates the
point.

Summation Problem

Let N be an integer constant with N ≥ 0. The problem is to find a program
SUM that stores in an integer variable x the sum of the elements of a given
section a[0 : N −1] of an array a of type integer → integer. We require that
a 6∈ change(SUM). By definition, the sum is 0 if N = 0. Define now

r ≡ N ≥ 0

and
q ≡ x = ΣN−1

i=0 a[i].

The assertion q states that x stores the sum of the elements of the section
a[0 : N − 1]. Our goal is to derive a program SUM of the form

SUM ≡ T ;while B do S od.

We replace the constant N by a fresh variable k. Putting appropriate
bounds on k we obtain

p ≡ 0 ≤ k ≤ N ∧ x = Σk−1
i=0 a[i]

as a proposal for the invariant of the program to be developed.
We now attempt to satisfy conditions 1–5 by choosing B,S and t appro-

priately.

Re: 1. To establish {r} T {p}, we choose T ≡ k := 0; x := 0.

Re: 3. To establish p ∧ ¬B → q, we choose B ≡ k 6= N .

Re: 4. We have p → N − k ≥ 0, which suggests choosing t ≡ N − k as the
bound function.

Re: 5. To decrease the bound function with each iteration, we choose the
program k := k + 1 as part of the loop body.

Re: 2. Thus far we have the following incomplete proof outline:
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{r}
k := 0; x := 0;
{inv : p}{bd : t}
while k 6= N do {p ∧ k 6= N}

S1;
{p[k := k + 1]}
k := k + 1
{p}

od
{p ∧ k = N}
{q}

where S1 is still to be found.
To this end, we compare now the precondition and postcondition of S1.

The precondition p ∧ k 6= N implies

0 ≤ k + 1 ≤ N ∧ x = Σk−1
i=0 a[i]

and the postcondition p[k := k + 1] is equivalent to

0 ≤ k + 1 ≤ N ∧ x = (Σk−1
i=0 a[i]) + a[k].

We see that adding a[k] to x will “transform” one assertion into another.
Thus, we can choose

S1 ≡ x := x + a[k]

to ensure that p is a loop invariant.
Summarizing, we have developed the following program together with its

correctness proof:

SUM ≡ k := 0; x := 0;
while k 6= N do

x := x + a[k];
k := k + 1

od.

3.11 Case Study: Minimum-Sum Section Problem

We now systematically develop a less trivial program. We study here an ex-
ample from Gries [1982]. Consider a one-dimensional array a of type integer
→ integer and an integer constant N > 0. By a section of a we mean a
fragment of a of the form a[i : j] where 0 ≤ i ≤ j < N . The sum of a section
a[i : j] is the expression Σj

k=ia[k]. A minimum-sum section of a[0 : N −1] is a
section a[i : j] such that the sum of a[i : j] is minimal among all subsections
of a[0 : N − 1].
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For example, the minimum-sum section of a[0 : 4] = (5,−3, 2,−4, 1) is
a[1 : 3] = (−3, 2,−4) and its sum is −5. The two minimum-sum sections of
a[0 : 4] = (5, 2, 5, 4, 2) are a[1 : 1] and a[4 : 4].

Let si,j denote the sum of section a[i : j], that is,

si,j = Σj
k=i a[k].

The problem now is to find a program MINSUM such that a 6∈
change(MINSUM) and the correctness formula

{N > 0} MINSUM {q}

holds in the sense of total correctness, where

q ≡ sum = min {si,j | 0 ≤ i ≤ j < N}.

Thus q states that sum is the minimum of all si,j with i and j varying,
where 0 ≤ i ≤ j < N holds.

So the above correctness formula states that MINSUM stores in the vari-
able sum the sum of a minimum-sum section of a[0 : N − 1].

First we introduce the following notation, where k ∈ {1, . . . , n}:

sk = min {si,j | 0 ≤ i ≤ j < k}.

Thus sk is the sum of a minimum-sum section of a[0 : k − 1]. Then we
have q ≡ sum = sN .

We begin as in the previous example and try to find the invariant p by
replacing the constant N in the postcondition q by a fresh variable k and by
putting appropriate bounds on k:

p ≡ 1 ≤ k ≤ N ∧ sum = sk.

As before, we now attempt to satisfy conditions 1–5 of Section 3.10 choosing
B,S and t in an appropriate way.

Re: 1. To establish {N > 0} T {p}, we choose as initialization T ≡ k :=
1; sum := a[0].

Re: 3. To establish p ∧ ¬B → q, we choose B ≡ k 6= N .

Re: 4. Because p → N − k ≥ 0, we choose t ≡ N − k as the bound function.

Re: 5. To decrease the bound function with each iteration, we put k := k +1
at the end of the loop body.

Re: 2. So far we have obtained the following incomplete proof outline for
total correctness:
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{N > 0}
k := 1; sum := a[0];
{inv : p}{bd : t}
while k 6= N do {p ∧ k 6= N}

S1;
{p[k := k + 1]}
k := k + 1
{p}

od
{p ∧ k = N}
{q},

where S1 is still to be found. To this end, as in the previous example, we
compare the precondition and postcondition of S1. We have

p ∧ k 6= N → 1 ≤ k + 1 ≤ N ∧ sum = sk

and

p[k := k + 1]

↔ 1 ≤ k + 1 ≤ N ∧ sum = sk+1

↔ 1 ≤ k + 1 ≤ N ∧ sum = min {si,j | 0 ≤ i ≤ j < k + 1}

↔ {{si,j | 0 ≤ i ≤ j < k + 1} =

{si,j | 0 ≤ i ≤ j < k} ∪ {si,k | 0 ≤ i < k + 1}

and min(A ∪ B) = min {minA,minB}}

1 ≤ k + 1 ≤ N ∧ sum = min(sk,min {si,k | 0 ≤ i < k + 1}).

Using the abbreviation

tk ≡ min {si,k−1 | 0 ≤ i < k}

for k ∈ {1, . . . , n} we obtain

p[k := k + 1] ↔ 1 ≤ k + 1 ≤ N ∧ sum = min(sk, tk+1).

It is easy to check that the assignment

S1 ≡ sum := min(sum, tk+1) (3.45)

transforms the precondition 1 ≤ k+1 ≤ N ∧ sum = sk into the postcondition
1 ≤ k + 1 ≤ N ∧ sum = min(sk, tk+1). In (3.45) the expression tk+1 still
needs to be computed. We discuss two possible solutions.
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Solution 1: Direct Computation. If we just expand the definition of tk+1

we arrive at the program

k := 1; sum := a[0];
while k 6= N do

sum := min(sum, tk+1);
k := k + 1

od

with
tk+1 ≡ min {si,k | 0 ≤ i < k + 1}.

The computation of tk+1 needs a number of steps proportional to k. Since the
while loop is executed for k = 1, . . ., N , the whole program needs a number
of steps proportional to

ΣN
k=1 k =

N · (N + 1)

2
,

that is, proportional to N2.

Solution 2: Efficient Computation. To develop a more efficient program
we introduce a new variable x which should store the value of tk+1 just before
executing the assignment (3.45) to sum. For this purpose we strengthen the
invariant p. Since at the beginning of the kth iteration only the sums si,j

with i ≤ j < k have been investigated, we choose as the new invariant

p∗ ≡ p ∧ x = tk ≡ 1 ≤ k ≤ N ∧ sum = sk ∧ x = tk

and repeat the development process. We reuse the bound function t = N − k
and add the initialization x := a[0]. This yields the following proof outline
for total correctness:

{N > 0}
k := 1; sum := a[0]; x := a[0];
{inv : p∗}{bd : t}
while k 6= N do

{p∗ ∧ k 6= N}
S1

∗;
{p∗[k := k + 1]}
k := k + 1
{p∗}

od
{p∗ ∧ k = N}
{q},

where S1
∗ remains to be developed. To this end, we compare again the pre-

and postcondition of S1
∗. We have
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p∗ ∧ k 6= N → 1 ≤ k + 1 ≤ N ∧ sum = sk ∧ x = tk

and

p∗[k := k + 1]

↔ 1 ≤ k + 1 ≤ N ∧ sum = sk+1 ∧ x = tk+1

↔ {see p[k := k + 1] in Solution 1}

1 ≤ k + 1 ≤ N ∧ sum = min(sk, tk+1) ∧ x = tk+1

↔ 1 ≤ k + 1 ≤ N ∧ sum = min(sk, x) ∧ x = tk+1.

To bring this condition closer to the form of the precondition, we express
tk+1 with the help of tk:

tk+1

= {definition of tk}

min {si,k | 0 ≤ i < k + 1}

= {associativity of min}

min(min {si,k | 0 ≤ i < k}, sk,k)

= {si,k = si,k−1 + a[k]}

min(min {si,k−1 + a[k] | 0 ≤ i < k}, a[k])

= {property of min}

min(min {si,k−1 | 0 ≤ i < k} + a[k], a[k])

= {definition of tk}

min(tk + a[k], a[k]).

Thus

p∗[k := k + 1]

↔ 1 ≤ k + 1 ≤ N ∧ sum = min(sk, x) ∧ x = min(tk + a[k], a[k]).

Using the assignment axiom, the composition rule and the rule of conse-
quence, it is easy to check that the precondition

1 ≤ k + 1 ≤ N ∧ sum = sk ∧ x = tk

gets transformed into the postcondition

1 ≤ k + 1 ≤ N ∧ sum = min(sk, x) ∧ x = min(tk + a[k], a[k])

by the following sequence of assignments:

S1
∗ ≡ x := min(x + a[k], a[k]); sum := min(sum, x).
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Thus we have now developed the following program MINSUM together with
its correctness proof:

MINSUM ≡ k := 1; sum := a[0]; x := a[0];
while k 6= N do

x := min(x + a[k], a[k]);
sum := min(sum, x);
k := k + 1

od.

To compute its result MINSUM needs only a number of steps proportional
to N . This is indeed optimal for the problem of the minimum-sum section
because each element of the section a[0 : N − 1] needs to be checked at least
once.

3.12 Exercises

Let N stand for M or Mtot .

3.1. Prove the Input/Output Lemma 3.3.

3.2. Prove the Change and Access Lemma 3.4.

3.3. Prove that

(i) N [[if B then S1 else S2 fi]] = N [[if ¬B then S2 else S1 fi]],
(ii) N [[while B do S od]] =

N [[if B then S; while B do S od else skip fi]].

3.4. Which of the following correctness formulas are true in the sense of
partial correctness?

(i) {true} x := 100 {true},
(ii) {true} x := 100 {x = 100},
(iii) {x = 50} x := 100 {x = 50},
(iv) {y = 50} x := 100 {y = 50},
(v) {true} x := 100 {false},
(vi) {false} x := 100 {x = 50}.

Give both an informal argument and a formal proof in the system PW. Which
of the above correctness formulas are true in the sense of total correctness?

3.5. Consider the program

S ≡ z := x; x := y; y := z.

Prove the correctness formula
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{x = x0 ∧ y = y0} S {x = y0 ∧ y = x0}

in the system PW. What is the intuitive meaning of this formula?

3.6. Prove the Soundness Theorem 3.6.

3.7. The following “forward” assignment axiom was proposed in Floyd
[1967a] for the case of simple variables and in de Bakker [1980] for the case
of subscripted variables:

{p} u := t {∃y : (p[u := y] ∧ u = t[u := y])}.

(i) Prove its truth. Show that it can be proved in the proof system PW.
Show that the assignment axiom can be proved from the above axiom
using the consequence rule.

(ii) Show that in general the simple “assignment axiom”

{true} u := t {u = t}

is not true. Investigate under which conditions on u and t it becomes
true.

3.8. Prove the correctness formula

{true} while true do x := x − 1 od {false}

in the system PW. Examine where an attempt at proving the same formula
in the system TW fails.

3.9. Consider the following program S computing the product of two natural
numbers x and y:

S ≡ prod := 0; count := y;
while count > 0 do

prod := prod + x;
count := count − 1

od,

where x, y, prod, count are integer variables.

(i) Exhibit the computation of S starting in a proper state σ with σ(x) = 4
and σ(y) = 3.

(ii) Prove the correctness formula

{x ≥ 0 ∧ y ≥ 0} S {prod = x · y}

in the system TW.
(iii) State and prove a correctness formula about S expressing that the exe-

cution of S does not change the values of the variables x and y.
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(iv) Determine the weakest precondition wp(S, true).

3.10. Fibonacci number Fn is defined inductively as follows:

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 2.

Extend the assertion language by a function symbol fib of type integer →
integer such that for n ≥ 0 the expression fib(n) denotes Fn.

(i) Prove the correctness formula

{n ≥ 0} S {x = fib(n)},

where

S ≡ x := 0; y := 1; count := n;
while count > 0 do

h := y; y := x + y; x := h;
count := count − 1

od

and x, y, n, h, count are all integer variables.
(ii) Let a be an array of type integer → integer. Construct a

while program S′ with n 6∈ var(S′) such that

{n ≥ 0} S′ {∀(0 ≤ k ≤ n) : a[k] = fib(k)}

is true in the sense of total correctness. Prove this correctness formula
in the system TW.

3.11. Recall that

if B then S fi ≡ if B then S else skip fi.

Show that the following proof rule is sound for partial correctness:

{p ∧ B} S {q}, p ∧ ¬B → q

{p} if B then S fi {q}

3.12. For while programs S and Boolean conditions B let the repeat-loop
be defined as follows:

repeat S until B ≡ S; while ¬B do S od.

(i) Give the transition axioms or rules specifying the operational semantics
of the repeat-loop.
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(ii) Show that the following proof rule is sound for partial correctness:

{p} S {q}, q ∧ ¬B → p

{p} repeat S until B {q ∧ B}
.

Give a sound proof rule for total correctness of repeat-loops.
(iii) Prove that

N [[repeat repeat S until B1 until B2]]

= N [[repeat S until B1 ∧ B2]].

3.13. Suppose that
< S, σ > →∗ < R, τ >,

where R 6≡ E. Prove that R ≡ at(T, S) for a subprogram T of S.
Hint. Prove by induction on the length of computation that R is a sequential
composition of subprograms of S.

3.14. Consider the program DIV of Example 3.4 and the assertion

q ≡ quo · y + rem = x ∧ 0 ≤ rem < y.

Determine the preconditions wlp(DIV, q) and wp(DIV, q).

3.15. Prove the Weakest Liberal Precondition Lemma 3.5.
Hint. For (ii) use the Substitution Lemma 2.4.

3.16. Prove the Weakest Precondition Lemma 3.6.
Hint. For (ii) use the Substitution Lemma 2.4.

3.17. Prove the Soundness Theorem 3.7.

3.13 Bibliographic Remarks

In this chapter we studied only the simplest class of deterministic programs,
namely while programs. This class is the kernel of imperative programming
languages; in this book it serves as the starting point for investigating recur-
sive, object-oriented, parallel and distributed programs.

The approach presented here is usually called Hoare’s logic. It has been
successfully extended, in literally hundreds of papers, to handle other pro-
gramming constructs. The survey paper Apt [1981] should help as a guide to
the history of the first ten years in this vast domain. The history of program
verification is traced in Jones [1992].

A reader who is interested in a more detailed treatment of the subject is
advised to read de Bakker [1980], Reynolds [1981], Tucker and Zucker [1988],
and/or Nielson and Nielson [2007]. Besides Hoare’s logic other approaches to
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the verification of while programs also have been developed, for example, one
based on denotational semantics. An introduction to this approach can be
found in Loeckx and Sieber [1987]. This book also provides further pointers
to the early literature.

The assignment axiom for simple variables is due to Hoare [1969] and for
subscripted variables due to de Bakker [1980]. Different axioms for assign-
ment to subscripted variables are given in Hoare and Wirth [1973], Gries
[1978] and Apt [1981]. The composition rule, loop rule and consequence rules
are due to Hoare [1969]. The conditional rule is due to Lauer [1971] where
also the first soundness proof of (an extension of) the proof system PW is
given. The loop II rule is motivated by Dijkstra [1982, pages 217–219].

The parallel assignment and the failure statements are from Dijkstra
[1975]. The failure statement is a special case of the alternative command
there considered and which we shall study in Chapter 10.

The invariance axiom and conjunction rule are due to Gorelick [1975] and
the invariance rule and the ∃-introduction rule are essentially due to Harel
[1979].

Completeness of the proof system PW is a special case of a completeness
result due to Cook [1978]. The completeness proof of the proof system TW
is a modification of an analogous proof by Harel [1979]. In our approach only
one fixed interpretation of the assertion language is considered. This is not
the case in Cook [1978] and Harel [1979] where the completeness theorems
refer to a class of interpretations.

Clarke showed in [1979] that for deterministic programs with a power-
ful ALGOL-like procedure mechanism it is impossible to obtain a complete
Hoare-style proof system even if —different from this book— only logical
structures with finite data domains are considered. For more details see Sec-
tion 5.6.

In Zwiers [1989] the auxiliary rules presented in Section 3.8 are called
adaptation rules. The reason for their name is that they allow us to adapt a
given correctness formula about a program to other pre- and postconditions.
Adaptation rules are independent of the syntactic structure of the programs.
Hence they can be used to reason about identifiers ranging over programs.
Such identifiers appear in the treatment of recursion and in the derivation
of programs from specifications. The name “adaptation rule” goes back to
Hoare [1971a].

The program PART for partitioning an array in Section 3.9 represents
the body of the procedure Partition inside the recursive program Quicksort
invented by Hoare [1961a,1962] (see Chapter 5). Partial correctness of Par-
tition is shown in Foley and Hoare [1971]. An informal proof of termination
of Partition is given in Hoare [1971b] as part of the proof of the program
Find by Hoare [1961b]. In Filliâtre [2007] this informal correctness proof is
formalized and certified using the interactive theorem prover Coq. Filliâtre
follows Hoare’s proof as closely as possible though does not explain which
proof rules are used. He points out that two assertions used in Hoare [1971b]
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are not invariants of the outer loop of Partition but hold only in certain
parts of the loop. This explains why our correctness proof of PART is more
complicated than the informal argument given in Hoare [1971b]. Also our
bound functions used to show the termination property T are more elabo-
rate than in Hoare [1971b] because the invariants should imply that they are
non-negative. These bound functions are (modulo an offset of 1) exactly as
in Filliâtre [2007].

The systematic development of correct programs was first described in the
book by Dijkstra [1976]. The approach has been further explained in Gries
[1981]. Both Dijkstra and Gries base their work on program development
on a class of nondeterministic programs called guarded commands which are
studied in Chapter 10.
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W HILE PROGRAMS, DISCUSSED in the previous chapter, are of

course extremely limited. Focusing on them allowed us to intro-

duce two basic topics which form the subject of this book: semantics and

program verification. We now proceed by gradually introducing more power-

ful programming concepts and extending our analysis to them.

Every realistic programming language offers some way of structuring the

programs. Historically, the first concept allowing us to do so was procedures.

To systematically study their verification we proceed in two steps. In this

chapter we introduce parameterless procedures and in the next chapter pro-

cedures with parameters. This allows us to focus first on recursion, an impor-

tant and powerful concept. To deal with it we need to modify appropriately

the methods introduced in the previous chapter.

We start by defining in Section 4.1 the syntax of programs in the context of

a set of declarations of parameterless recursive procedures. We call such pro-

grams recursive programs. In Section 4.2 we extend the semantics introduced

127
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in Section 3.2 to recursive programs. Thanks to our focus on operational

semantics, such an extension turns out to be very simple.

Verification of recursive programs calls for a non-trivial extension of the

approach introduced in Section 3.3. In Section 4.3 we deal with partial cor-

rectness and total correctness. In each case we introduce proof rules that refer

in their premises to proofs. Then, as a case study, we consider in Section 4.5

the correctness of a binary search program.
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4.1 Syntax

Given a set of procedure identifiers, with typical elements P, P1, . . ., we extend
the syntax of while programs studied in Chapter 3 by the following clause:

S ::= P.

A procedure identifier used as a subprogram is called a procedure call. Pro-
cedures are defined by declarations of the form

P :: S.

In this context S is called the procedure body . Recursion refers here to the
fact that the procedure body S of P can contain P as a subprogram. Such
occurrences of P are called recursive calls. From now on we assume a given set
of procedure declarations D such that each procedure that appears in D has a
unique declaration in D. To keep notation simple we omit the “{ }” brackets
when writing specific sets of declarations, so we write P1 :: S1, . . ., Pn :: Sn

instead of {P1 :: S1, . . ., Pn :: Sn}.
A recursive program consists of a main statement S built according to the

syntax of this section and a given set D of (recursive) procedure declarations.
All procedure calls in the main statement refer to procedures that are declared
in D. If D is clear from the context we refer to the main statement as a
recursive program.

Example 4.1. Using this syntax the declaration of the proverbial factorial
program can be written as follows:

Fac :: if x = 0 then y := 1 else x := x − 1; Fac; x := x + 1; y := y · x fi.
(4.1)

A main statement in the context of this declaration is the procedure call
Fac. ⊓⊔

4.2 Semantics

We define the semantics of recursive programs by extending the transition
system for while programs by the following transition axiom:

(viii) < P, σ > → < S, σ >, where P :: S ∈ D.

This axiom captures the meaning of a procedure call by means of a copy
rule, according to which a procedure call is dynamically replaced by the
corresponding procedure body.

The concepts introduced in Definition 3.1, in particular that of a compu-
tation, extend in an obvious way to the current setting.
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Example 4.2. Assume the declaration (4.1) of the factorial program. Then
we have the following computation of the main statement Fac, where σ is a
proper state with σ(x) = 2:

< Fac, σ >

→ < if x = 0 then y := 1 else x := x − 1; Fac;
x := x + 1; y := y · x fi, σ >

→ < x := x − 1; Fac; x := x + 1; y := y · x, σ >

→ < Fac; x := x + 1; y := y · x, σ[x := 1] >

→ < if x = 0 then y := 1 else x := x − 1; Fac; x := x + 1; y := y · x fi;
x := x + 1; y := y · x, σ[x := 1] >

→ < x := x − 1; Fac; x := x + 1; y := y · x;
x := x + 1; y := y · x, σ[x := 1] >

→ < Fac; x := x + 1; y := y · x; x := x + 1; y := y · x, σ[x := 0] >

→ < if x = 0 then y := 1 else x := x − 1; Fac; x := x + 1; y := y · x fi;
x := x + 1; y := y · x; x := x + 1; y := y · x, σ[x := 0] >

→ < y := 1; x := x + 1; y := y · x; x := x + 1; y := y · x, σ[x := 0] >

→ < x := x + 1; y := y · x; x := x + 1; y := y · x, σ[y, x := 1, 0] >

→ < y := y · x; x := x + 1; y := y · x, σ[y, x := 1, 1] >

→ < x := x + 1; y := y · x, σ[y, x := 1, 1] >

→ < y := y · x, σ[y := 1] >

→ < E, σ[y := 2] >

⊓⊔

Definition 4.1. Recall that we assumed a given set of procedure declara-
tions D. We now extend two input/output semantics originally introduced
for while programs to recursive programs by using the transition relation
→ defined by the axioms and rules (i)–(viii):

(i) the partial correctness semantics defined by

M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >},

(ii) the total correctness semantics defined by

Mtot [[S]](σ) = M[[S]](σ) ∪ {⊥ | S can diverge from σ}.

⊓⊔

Example 4.3. Assume the declaration (4.1) of the factorial procedure. Then
the following hold for the main statement Fac:
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• if σ(x) ≥ 0 then

M[[Fac]](σ) = Mtot [[Fac]](σ) = {σ[y := σ(x)!]},

where for n ≥ 0, the expression n! denotes the factorial of n, i.e., 0! = 1
and for n > 0, n! = 1 · . . . · n,

• if σ(x) < 0 then

M[[Fac]](σ) = ∅ and Mtot [[Fac]](σ) = {⊥}.
⊓⊔

Properties of the Semantics

In the Input/Output Lemma 3.3(v) we expressed the semantics of loops in
terms of a union of semantics of its finite syntactic approximations. An anal-
ogous observation holds for recursive programs. In this lemma we refer to
different sets of procedure declarations. To avoid confusion we then write
D | S when we consider S in the context of the set D of procedure declara-
tions.

Recall that Ω is a while program such that for all proper states σ,
M[[Ω]](σ) = ∅. Given a declaration D = P1 :: S1, . . . , Pn :: Sn and a recursive
program S, we define the kth syntactic approximation Skof S by induction
on k ≥ 0:

S0 = Ω,
Sk+1 = S[Sk

1 /P1, . . . , S
k
n/Pn],

where S[R1/P1, . . . , Rn/Pn] is the result of a simultaneous replacement in
S of each procedure identifier Pi by the statement Ri. Furthermore, let Dk

abbreviate P1 :: Sk
1 , . . . , Pn :: Sk

n and let N stand for M or Mtot . The
following lemma collects the properties of N we need.

Lemma 4.1. (Input/Output)

(i) N [[Dk | S]] = N [[Sk+1]].

(ii) N [[D | S]] = N [[D | S[S1/P1, . . . , Sn/Pn]]].

In particular, N [[D | Pi]] = N [[D | Si]] for i = 1, . . ., n.

(iii) M[[D | S]] =
⋃∞

k=0 M[[Sk]].

Proof. See Exercise 4.3. ⊓⊔

Note that each Sk is a while statement, that is a program without pro-
cedure calls.
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4.3 Verification

Partial Correctness

Let S be the main statement of a recursive program in the context of a set
D of procedure declarations. As in the case of while programs we say that
the correctness formula {p} S {q} is true in the sense of partial correctness,
and write |= {p} S {q}, if

M[[S]]([[p]]) ⊆ [[q]].

Assuming D = P1 :: S1, . . . , Pn :: Sn, in order to prove |= {p} S {q} we
first prove

A ⊢ {p} S {q}

for some sequence

A ≡ {p1} P1 {q1}, . . . , {pn} Pn {qn}

of assumptions. Then to discharge these assumptions we additionally prove
that for all i = 1, . . . , n

A ⊢ {pi} Si {qi}.

We summarize these two steps by the following proof rule:

RULE 8: RECURSION

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q},
{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {pi} Si {qi}, i ∈ {1, . . ., n},

{p} S {q}

where D = P1 :: S1, . . . , Pn :: Sn.

The intuition behind this rule is as follows. Say that a program S is (p, q)-
correct if {p} S {q} holds in the sense of partial correctness. The second
premise of the rule states that we can establish for i = 1, . . . , n the (pi, qi)-
correctness of the procedure bodies Si from the assumption of the (pi, qi)-
correctness of the procedure calls Pi, for i = 1, . . . , n. Then we can prove the
(pi, qi)-correctness of the procedure calls Pi unconditionally, and thanks to
the first premise establish the (p, q)-correctness of the recursive program S.

We still have to clarify the meaning of the ⊢ provability relation that
we use in the rule premises. In these proofs we allow the axioms and proof
rules of the proof system PW, and appropriately modified auxiliary axioms
and proof rules introduced in Section 3.8. This modification consists of the
adjustment of the conditions for specific variables so that they now also refer



4.3 Verification 133

to the assumed set of procedure declarations D. To this end, we first extend
the definition of change(S).

Recall that the set change(S) consisted of all simple and array variables
that can be modified by S. This suggests the following extension of change(S)
to recursive programs and sets of procedure declarations:

change(P :: S) = change(S),
change({P :: S} ∪ D) = change(P :: S) ∪ change(D),
change(P ) = ∅.

Then we modify the auxiliary axioms and proof rules by adding the re-
striction that specific variables do not occur in change(D). For example, the
invariance axiom A2 now reads

{p} S {p}

where free(p) ∩ (change(D) ∪ change(S)) = ∅.
To prove partial correctness of recursive programs we use the following

proof system PR:

PROOF SYSTEM PR :
This system consists of the group of axioms
and rules 1–6, 8, and A2–A6.

Thus PR is obtained by extending the proof system PW by the recursion rule
8 and the auxiliary rules A2–A6 where we use the versions of auxiliary rules
modified by change(D) as explained above.

In the actual proof not all assumptions about procedure calls are needed,
only those assumptions that do appear in the procedure body. In particular,
when we deal only with one recursive procedure and use the procedure call
as the considered recursive program, the recursion rule can be simplified to

{p} P {q} ⊢ {p} S {q}

{p} P {q}

where D = P :: S.
Further, when the procedure P is not recursive, that is, its procedure

body S does not contain any procedure calls, the above rule can be further
simplified to

{p} S {q}

{p} P {q}

It is straightforward how to extend the concept of a proof outline to that
of a proof outline from a set of assumptions being correctness formulas: we
simply allow each assumption as an additional formation axiom. Now, the
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premises of the considered recursion rule and all subsequently introduced
recursion rules consist of the correctness proofs. We present them as proof
outlines from a set of assumptions. These assumptions are correctness for-
mulas about the calls of the considered procedures.

We illustrate this proof presentation by returning to the factorial program.

Example 4.4. Assume the declaration (4.1) of the factorial program. We
prove the correctness formula

{z = x ∧ x ≥ 0} Fac {z = x ∧ y = x!}

in the proof system PR. The assertion z = x is used both in the pre- and
postcondition to prove that the call of Fac does not modify the value of x
upon termination. (Without it the postcondition y = x! could be trivially
achieved by setting both x and y to 1.)

To this end, we introduce the assumption

{z = x ∧ x ≥ 0} Fac {z = x ∧ y = x!}

and show that

{z = x ∧ x ≥ 0} Fac {z = x ∧ y = x!}⊢ {z = x ∧ x ≥ 0} S {z = x ∧ y = x!},

where

S ≡ if x = 0 then y := 1 else x := x − 1; Fac; x := x + 1; y := y · x fi

is the procedure body of Fac.
First we apply the substitution rule to the assumption and obtain

{z − 1 = x ∧ x ≥ 0} Fac {z − 1 = x ∧ y = x!}.

The proof that uses this assumption can now be presented in the form of a
proof outline that we give in Figure 4.1. The desired conclusion now follows
by the simplified form of the recursion rule. ⊓⊔

Total Correctness

We say that the correctness formula {p} S {q} is true in the sense of total
correctness, and write |=tot {p} S {q}, if

Mtot [[S]]([[p]]) ⊆ [[q]].
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{z = x ∧ x ≥ 0}
if x = 0
then

{z = x ∧ x ≥ 0 ∧ x = 0}
{z = x ∧ 1 = x!}
y := 1
{z = x ∧ y = x!}

else
{z = x ∧ x ≥ 0 ∧ x 6= 0}
{z − 1 = x − 1 ∧ x − 1 ≥ 0}
x := x − 1;
{z − 1 = x ∧ x ≥ 0}
Fac;
{z − 1 = x ∧ y = x!}
x := x + 1;
{z − 1 = x − 1 ∧ y = (x − 1)!}
{z − 1 = x − 1 ∧ y · x = x!}
y := y · x
{z − 1 = x − 1 ∧ y = x!}
{z = x ∧ y = x!}

fi
{z = x ∧ y = x!}

Fig. 4.1 Proof outline showing partial correctness of the factorial procedure.

In this subsection the provability sign ⊢ refers to the proof system for total
correctness that consists of the proof system TW extended by the appropri-
ately modified auxiliary rules introduced in Section 3.8.

Let D = P1 :: S1, . . . , Pn :: Sn. In order to prove |=tot {P} S {q} we first
prove

A ⊢ {p}S{q}

for some sequence

A ≡ {p1} P1 {q1}, . . . , {pn} Pn {qn}

of assumptions. In order to discharge these assumptions we additionally prove
that for i = 1, . . . , n

{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢ {pi ∧ t = z} Si {qi}

and
pi → t ≥ 0
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hold. Here t is an integer expression and z a fresh integer variable which is
treated in the proofs

{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢ {pi ∧ t = z} Si {qi},

for i = 1, . . . , n, as a constant, which means that in these proofs neither the
∃-introduction rule nor the substitution rule of Section 3.8 is applied to z.
The expression t plays the role analogous to the bound function of a loop.

We summarize these steps as the following proof rule:

RULE 9: RECURSION II

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q},
{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢

{pi ∧ t = z} Si {qi}, i ∈ {1, . . ., n},
pi → t ≥ 0, i ∈ {1, . . ., n}

{p} S {q}

where D = P1 :: S1, . . . , Pn :: Sn and z is an integer variable that does not
occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs as a
constant, which means that in these proofs neither the ∃-introduction rule
A5 nor the substitution rule A7 is applied to z.

The intuition behind this rule is as follows. Say that a program S is (p, q, t)-
correct if {p} S {q} holds in the sense of total correctness, with at most t
procedure calls in each computation starting in a proper state satisfying p,
where t ≥ 0.

The second premise of the rule states that we can establish for i = 1, . . . , n
the (pi, qi, t)-correctness of the procedure bodies Si from the assumption of
the (pi, qi, z)-correctness of the procedure calls Pi, for i = 1, . . . , n, where z <
t. Then, thanks to the last premise, we can prove unconditionally {pi} Pi {qi}
in the sense of total correctness, for i = 1, . . . , n, and thanks to the first
premise, {p} S {q} in the sense of total correctness.

To prove total correctness of recursive programs we use the following proof
system TR:

PROOF SYSTEM TR :
This system consists of the group of axioms
and rules 1–4, 6, 7, 9, and A3–A6.

Thus TR is obtained by extending proof system TW by the recursion II rule
(rule 9) and the auxiliary rules A3–A6.

Again, when we deal only with one recursive procedure and use the proce-
dure call as the statement in the considered recursive program, this rule can
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be simplified to

{p ∧ t < z} P {q} ⊢ {p ∧ t = z} S {q},
p → t ≥ 0

{p} P {q}

where D = P :: S and z is treated in the proof as a constant.

Decomposition

As for while programs it is sometimes more convenient to decompose the
proof of total correctness of a recursive program into two separate proofs, one
of partial correctness and one of termination. Formally, this can be done using
the decomposition rule A1 introduced in Section 3.3, but with the provability
signs ⊢p and ⊢t referring to the proof systems PR and TR, respectively.

Example 4.5. We apply the decomposition rule A1 to the factorial program
studied in Example 4.4. Assume the declaration (4.1) of the factorial program.
To prove the correctness formula

{z = x ∧ x ≥ 0} Fac {z = x ∧ y = x!} (4.2)

in the sense of total correctness, we build upon the fact that we proved it
already in the sense of partial correctness.

Therefore we only need to establish termination. To this end, it suffices to
prove the correctness formula

{x ≥ 0} Fac {true} (4.3)

in the proof system TR. We choose

t ≡ x

as the bound function. The proof outline presented in Figure 4.2 then shows
that

{x ≥ 0 ∧ x < z} Fac {true} ⊢ {x ≥ 0 ∧ x = z} S {true}

holds. Applying now the simplified form of the recursion II rule we get (4.3).
By the consequence rule, we obtain {z = x ∧ x ≥ 0} Fac {true}, as required
by the decomposition rule to establish (4.2). ⊓⊔
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{x ≥ 0 ∧ x = z}
if x = 0
then

{x ≥ 0 ∧ x = z ∧ x = 0}
{true}
y := 1
{true}

else
{x ≥ 0 ∧ x = z ∧ x 6= 0}
{x − 1 ≥ 0 ∧ x − 1 < z}
x := x − 1;
{x ≥ 0 ∧ x < z}
Fac;
{true}
x := x + 1;
{true}
y := y · x
{true}

fi
{true}

Fig. 4.2 Proof outline showing termination of the factorial procedure.

Discussion

Let us clarify now the restrictions used in the recursion II rule. The following
example explains why the restrictions we imposed on the integer variable z
are necessary.

Example 4.6. Consider the trivially non-terminating recursive procedure
declared by

P :: P.

We first show that when we are allowed to existentially quantify the variable
z, we can prove {x ≥ 0} P {true} in the sense of total correctness, which
is obviously wrong. Indeed, take as the bound function t simply the integer
variable x. Then

x ≥ 0 → t ≥ 0.

Next we show

{x ≥ 0 ∧ x < z} P {true} ⊢ {x ≥ 0 ∧ x = z} P {true}.

Using the ∃-introduction rule A5 of Section 3.8 we existentially quantify z
and obtain from the assumption the correctness formula
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{∃z : (x ≥ 0 ∧ x < z)} P {true}.

But the precondition ∃z : (x ≥ 0 ∧ x < z) is equivalent to x ≥ 0, so by the
consequence rule we derive

{x ≥ 0} P {true}.

Using the consequence rule again we can strengthen the precondition and
obtain

{x ≥ 0 ∧ x = z} P {true}.

Now we apply the simplified form of the recursion II rule and obtain
{x ≥ 0} P {true}.

In a similar way we can show that we must not apply the substitution
rule A7 of Section 3.8 to the variable z. Indeed, substituting in the above
assumption {x ≥ 0 ∧ x < z} P {true} the variable z by x + 1 (note that the
application condition {x, z}∩var(P ) = ∅ of the substitution rule is satisfied),
we obtain

{x ≥ 0 ∧ x < x + 1} P {true}.

Since x ≥ 0 ∧ x = z → x ≥ 0 ∧ x < x+1, we obtain by the consequence rule

{x ≥ 0 ∧ x = z} P {true},

as above. ⊓⊔

Soundness

We now establish soundness of the recursion rule and as a consequence that
of the proof system PR in the sense of partial correctness. Below we write

{p1} P1 {q1}, . . . , {pn} Pn {qn} |= {p} S {q}

when the following holds:

for all sets of procedure declarations D
if |= {pi} Pi {qi}, for i = 1, . . . , n, then |= {p} S {q}.

We shall need the following strengthening of the Soundness Theorem 3.1(i).
Recall that the provability sign ⊢ refers to the proof system PW extended
by the appropriately modified auxiliary axioms and proof rules introduced in
Section 3.8.

Theorem 4.1. (Soundness of Proofs from Assumptions)

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q}
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implies
{p1} P1 {q1}, . . . , {pn} Pn {qn} |= {p} S {q}.

Proof. See Exercise 4.5. ⊓⊔

Theorem 4.2. (Soundness of the Recursion Rule)
Assume that D = P1 :: S1, . . . , Pn :: Sn. Suppose that

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q}

and for i = 1, . . . , n

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {pi} Si {qi}.

Then
|= {p} S {q}.

Proof. By the Soundness Theorem 4.1, we have

{p1} P1 {q1}, . . . , {pn} Pn {qn} |= {p} S {q} (4.4)

and for i = 1, . . . , n

{p1} P1 {q1}, . . . , {pn} Pn {qn} |= {pi} Si {qi}. (4.5)

We first show that
|= {pi} Pi {qi} (4.6)

for i = 1, . . . , n. In the proof, as in the Input/Output Lemma 4.1, we refer
to different sets of procedure declarations and write D | S when we mean S
in the context of the set D of procedure declarations. By the Input/Output
Lemma 4.1(i) and (iii) we have

M[[D | Pi]] =
∞⋃

k=0

M[[P k
i ]] = M[[P 0

i ]] ∪
∞⋃

k=0

M[[Dk | Pi]] =
∞⋃

k=0

M[[Dk | Pi]],

so

|= {pi} D | Pi {qi} iff for all k ≥ 0 we have |= {pi} Dk | Pi {qi}.

We now prove by induction on k that for all k ≥ 0

|= {pi} Dk | Pi {qi},

for i = 1, . . . , n.
Induction basis: k = 0. Since S0

i = Ω, by definition |= {pi} D0 | Pi {qi}
holds, for i = 1, . . . , n.



4.3 Verification 141

Induction step: k → k + 1. By the induction hypothesis, we have
|= {pi} Dk | Pi {qi}, for i = 1, . . . , n. Fix some i ∈ {1, . . ., n}. By (4.5),
we obtain |= {pi} Dk | Si {qi}. By the Input/Output Lemma 4.1(i) and (ii),

M[[Dk | Si]] = M[[Sk+1
i ]] = M[[Dk+1 | Sk+1

i ]] = M[[Dk+1 | Pi]],

hence |= {pi} Dk+1 | Pi {qi}.

This proves (4.6) for i = 1, . . . , n. Now (4.4) and (4.6) imply |= {p} S {q}
(where we refer to the set D of procedure declarations). ⊓⊔

With this theorem we can state the following soundness result.

Corollary 4.1. (Soundness of PR) The proof system PR is sound for par-
tial correctness of recursive programs.

Proof. The proof combines Theorem 4.2 with Theorem 3.1(i) on soundness
of the proof system PW and Theorem 3.7(i),(ii) on soundness of the auxiliary
rules. ⊓⊔

Next, we establish soundness of the recursion II rule and as a consequence
that of the proof system TR in the sense of total correctness. Below we write

{p1} P1 {q1}, . . . , {pn} Pn {qn} |=tot {p} S {q}

when the following holds:

for all sets of procedure declarations D
if |=tot {pi} Pi {qi}, for i = 1, . . . , n then |=tot {p} S {q}.

As in the case of partial correctness we need a strengthening of the Sound-
ness Theorem 3.1(ii). Recall that in this section the provability sign ⊢ refers
to the proof system for total correctness that consists of the proof system TW
extended by the auxiliary axioms and proof rules introduced in Section 3.8.

Theorem 4.3. (Soundness of Proofs from Assumptions)

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q}

implies
{p1} P1 {q1}, . . . , {pn} Pn {qn} |=tot {p} S {q}.

Proof. See Exercise 4.6. ⊓⊔

Additionally, we shall need the following lemma that clarifies the reason
for the qualification that the integer variable z is used as a constant.
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Theorem 4.4. (Instantiation) Suppose that the integer variable z does not
appear in S and in the proof

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q}

it is treated as a constant, that is, neither the ∃-introduction rule nor the
substitution rule of Section 3.8 is applied to z. Then for all integers m

{p1θ} P1 {q1θ}, . . . , {pnθ} Pn {qnθ} |=tot {pθ} S {qθ},

where θ ≡ [z := m].

Proof. See Exercise 4.7. ⊓⊔

Finally, we shall need the following observation.

Lemma 4.2. (Fresh Variable) Suppose that z is an integer variable that
does not appear in D,S or q. Then

|=tot {∃z ≥ 0 : p} S {q} iff for all m ≥ 0, |=tot {p[z := m]} S {q}.

Proof. See Exercise 4.8. ⊓⊔

Theorem 4.5. (Soundness of the Recursion II Rule)
Assume that D = P1 :: S1, . . . , Pn :: Sn. Suppose that

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q}

and for i = 1, . . . , n

{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢ {pi ∧ t = z} Si {qi}

and
pi → t ≥ 0,

where the fresh integer variable z is treated in the proofs as a constant. Then

|=tot {p} S {q}.

Proof. By the Soundness Theorem 4.3 we have

{p1} P1 {q1}, . . . , {pn} Pn {qn} |=tot {p} S {q}. (4.7)

Further, by the Instantiation Theorem 4.4, we deduce for i = 1, . . . , n from

{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢ {pi ∧ t = z} Si {qi}

that for all m ≥ 0
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{p1 ∧ t < m} P1 {q1}, . . . , {pn ∧ t < m} Pn {qn} ⊢ {pi ∧ t = m} Si {qi}.

Hence by the Soundness Theorem 4.3, for i = 1, . . . , n and m ≥ 0

{p1 ∧ t < m} P1 {q1}, . . . , {pn ∧ t < m} Pn {qn} |=tot {pi ∧ t = m} Si {qi}.
(4.8)

We now show
|=tot {pi} Pi {qi} (4.9)

for i = 1, . . . , n.
To this end, we exploit the fact that the integer variable z appears neither

in pi nor in t. Therefore the assertions pi and ∃z : (pi ∧ t < z) are equivalent.
Moreover, since pi → t ≥ 0, we have

∃z : (pi ∧ t < z) →∃z ≥ 0 : (pi ∧ t < z).

So it suffices to show

|=tot {∃z ≥ 0 : (pi ∧ t < z)} Pi {qi}

for i = 1, . . . , n. Now, by the Fresh Variable Lemma 4.2 it suffices to prove
that for all m ≥ 0

|=tot {pi ∧ t < m} Pi {qi}.

for i = 1, . . . , n. We proceed by induction on m.

Induction basis: m = 0. By assumption, pi → t ≥ 0 holds for i = 1, . . . , n, so
(pi ∧ t < 0) → false. Hence the claim holds as |=tot {false} Pi {qi}.

Induction step: m → m + 1. By the induction hypothesis, we have

|=tot {pi ∧ t < m} Pi {qi},

for i = 1, . . . , n.
By (4.8), we obtain |=tot {pi ∧ t = m} Si {qi} for i = 1, . . . , n, so by

the Input/Output Lemma 4.1(ii) we have |=tot {pi ∧ t = m} Pi {qi} for
i = 1, . . . , n. But t < m + 1 is equivalent to t < m ∨ t = m, so we ob-
tain |=tot {pi ∧ t < m + 1} Pi {qi}, for i = 1, . . . , n.

This proves (4.9) for i = 1, . . . , n. Now (4.7) and (4.9) imply
|=tot {p} S {q}. ⊓⊔

With this theorem we can state the following soundness result.

Corollary 4.2. (Soundness of TR) The proof system TR is sound for total
correctness of recursive programs.
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Proof. The proof combines Theorem 4.5 with Theorem 3.1(ii) on soundness
of the proof system TW and Theorem 3.7(iii) on soundness of the auxiliary
rules. ⊓⊔

4.4 Case Study: Binary Search

Consider a section a[first : last] (so first ≤ last) of an integer array a that is
sorted in increasing order. Given a variable val, we want to find out whether
its value occurs in the section a[first : last], and if yes, to produce the index
mid such that a[mid] = val. Since a[first : last] is sorted, this can be done
by means of the recursive binary search procedure shown in Figure 4.3. (An
iterative version of this program is introduced in Exercise 4.10.)

BinSearch :: mid := (first + last) div 2;
if first 6= last
then if a[mid] < val

then first := mid + 1; BinSearch
else if a[mid] > val

then last := mid; BinSearch
fi

fi
fi

Fig. 4.3 The program BinSearch.

We now prove correctness of this procedure. To refer in the postcondition
to the initial values of the variables first and last, we introduce variables f
and l. Further, to specify that the array section a[first : last] is sorted, we
use the assertion sorted(a[first : last]) defined by

sorted(a[first : last]) ≡ ∀x, y : (first ≤ x ≤ y ≤ last → a[x] ≤ a[y]).

Correctness of the BinSearch procedure is then expressed by the correct-
ness formula

{p}BinSearch{q},

where

p ≡ f = first ∧ l = last ∧ first ≤ last ∧ sorted(a[first : last]),

q ≡ f ≤ mid ≤ l ∧ (a[mid] = val ↔∃x ∈ [f : l] : a[x] = val).
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The postcondition q thus states that mid is an index in the section a[f : l]
and a[mid] = val exactly when the value of the variable val appears in the
section a[f : l].

Partial Correctness

In order to prove the partial correctness it suffices to show

{p}BinSearch{q} ⊢ {p}S{q},

where ⊢ refers to a sound proof system for partial correctness and S denotes
the body of BinSearch, and apply the simplified form of the recursion rule
of Section 4.3.

To deal with the recursive calls of BinSearch we adapt the assumption
{p} BinSearch {q} using the substitution rule and the invariance rule intro-
duced in Section 3.8, to derive the correctness formulas

{p[f := (f + l) div 2 + 1] ∧ r1} BinSearch {q[f := (f + l) div 2 + 1] ∧ r1}

and

{p[l := (f + l) div 2] ∧ r2} BinSearch {q[l := (f + l) div 2] ∧ r2},

where
r1 ≡ sorted(a[f : l]) ∧ a[(f + l) div 2] < val,

r2 ≡ sorted(a[f : l]) ∧ val < a[(f + l) div 2].

Then, as in the case of the factorial program, we present the proof from
these two assumptions in the form of a proof outline that we give in Figure 4.4.

Since we use the if B then S fi statement twice in the procedure body, we
need to justify the appropriate two applications of the rule for this statement,
introduced in Exercise 3.11. To this end, we need to check the following two
implications:

(p ∧ mid = (first + last) div 2 ∧ first = last) → q

and

(p ∧ mid = (first + last) div 2 ∧ first 6= last ∧ a[mid] = val) → q,

that correspond to the implicit else branches. The first implication holds,
since

(p ∧ mid = (first + last) div 2 ∧ first = last)
→ mid = f = l
→ a[mid] = val ↔∃x ∈ [f : l] : a[x] = val,
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{p}
mid := (first + last) div 2;
{p ∧ mid = (first + last) div 2}
if first 6= last
then
{p ∧ mid = (first + last) div 2 ∧ first 6= last}
if a[mid] < val
then

{p ∧ mid = (first + last) div 2 ∧ first 6= last ∧ a[mid] < val}
{(p[f := (f + l) div 2 + 1] ∧ r1)[first := mid + 1]}
first := mid + 1;
{p[f := (f + l) div 2 + 1] ∧ r1}
BinSearch
{q[f := (f + l) div 2 + 1] ∧ r1}
{q}

else
{p ∧ mid = (first + last) div 2 ∧ first 6= last ∧ a[mid] ≥ val}
if a[mid] > val
then
{p ∧ mid = (first + last) div 2 ∧ first 6= last ∧ a[mid] > val}
{(p[l := (f + l) div 2] ∧ r2)[last := mid]}
last := mid;
{p[l := (f + l) div 2] ∧ r2}
BinSearch
{q[l := (f + l) div 2] ∧ r2}
{q}

fi
{q}

fi
{q}

fi
{q}

Fig. 4.4 Proof outline showing partial correctness of the BinSearch procedure.

while the second implication holds, since

first ≤ last ∧ mid = (first + last) div 2 → first ≤ mid ≤ last.

It remains to clarify two applications of the consequence rules. To deal
with the one used in the then branch of the if -then-else statement note
the following implication that allows us to limit the search to a smaller array
section:
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(sorted(a[f : l]) ∧ f ≤ m < l ∧ a[m] < val) →
(∃x ∈ [m + 1 : l] : a[x] = val ↔∃x ∈ [f : l] : a[x] = val).

(4.10)

Next, note that

first < last → (first + last) div 2 + 1 ≤ last,

so

p ∧ first 6= last → p[f := (f + l) div 2 + 1][first := (f + l) div 2 + 1].

This explains the following sequence of implications:

p ∧ mid = (first + last) div 2 ∧ first 6= last ∧ a[mid] < val
→ p[f := (f + l) div 2 + 1][first := (f + l) div 2 + 1]

∧ mid = (f + l) div 2 ∧ r1

→ p[f := (f + l) div 2 + 1][first := mid + 1] ∧ r1

→ (p[f := (f + l) div 2 + 1] ∧ r1)[first := mid + 1].

Finally, observe that by (4.10) with m = (f + l) div 2 we get by the
definition of q and r1

q[f := (f + l) div 2 + 1] ∧ r1 → q.

This justifies the first application of the consequence rule. We leave the jus-
tification of the second application as Exercise 4.9. This completes the proof
of partial correctness.

Total Correctness

To deal with total correctness we use the proof methodology discussed in
the previous section. We have p → first ≤ last, so it suffices to prove
{first ≤ last} BinSearch {true} in the sense of total correctness using the
simplified form of the recursion II rule.

We use
t ≡ last − first

as the bound function. Then first ≤ last → t ≥ 0 holds, so it suffices to
prove

{first ≤ last ∧ t < z} BinSearch {true}⊢ {first ≤ last ∧ t = z} S {true}.

We present the proof in the form of a proof outline that we give in Fig-
ure 4.5. The two applications of the consequence rule used in it are justified
by the following sequences of implications:
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{first ≤ last ∧ last − first = z}
mid := (first + last) div 2;
{first ≤ last ∧ last − first = z ∧ mid = (first + last) div 2}
if first 6= last
then
{first < last ∧ last − first = z ∧ mid = (first + last) div 2}
if a[mid] < val
then

{first < last ∧ last − first = z ∧ mid = (first + last) div 2}
{(first ≤ last ∧ last − first < z)[first := mid + 1]}
first := mid + 1;
{first ≤ last ∧ last − first < z}
BinSearch
{true}

else
{first < last ∧ last − first = z ∧ mid = (first + last) div 2}
if a[mid] > val
then
{first < last ∧ last − first = z ∧ mid = (first + last) div 2}
{(first ≤ last ∧ last − first < z)[last := mid]}
last := mid;
{first ≤ last ∧ last − first < z}
BinSearch
{true}

fi
{true}

fi
{true}

fi
{true}

Fig. 4.5 Proof outline showing termination of the BinSearch procedure.

first < last ∧ last − first = z ∧ mid = (first + last) div 2
→ first ≤ mid < last ∧ last − first = z
→ mid + 1 ≤ last ∧ last − (mid + 1) < z

and

first < last ∧ last − first = z ∧ mid = (first + last) div 2
→ first ≤ mid < last ∧ last − first = z
→ first ≤ mid ∧ mid − first < z.
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Further, the Boolean expressions a[mid] < val and a[mid] > val are irrelevant
for the proof, so drop them from the assertions of the proof outline. (Formally,
this step is justified by the last two formation rules for proof outlines.)

This concludes the proof of termination.

4.5 Exercises

4.1. Using recursive procedures we can model the while B do S od loop as
follows:

P :: if B then S; P fi.

Assume the above declaration.

(i) Prove that M[[while B do S od]] = M[[P ]].
(ii) Prove that Mtot [[while B do S od]] = Mtot [[P ]].

4.2. Let D = P1 :: S1, . . . , Pn :: Sn. Prove that Pi
0 = Ω and Pi

k+1 = Sk
i for

k ≥ 0.

4.3. Prove the Input/Output Lemma 4.1.

4.4. Intuitively, for a given set of procedure declarations a procedure is non-
recursive if it does not call itself, possibly through a chain of calls of other
procedures. Formalize this definition.

Hint. Introduce the notion of a call graph in which the nodes are procedure
identifiers and in which a directed arc connects two nodes P and Q if the
body of P contains a call of Q.

4.5. Prove the Soundness Theorem 4.1.

4.6. Prove the Soundness Theorem 4.3.

4.7. Prove the Instantiation Theorem 4.4.

4.8. Prove the Fresh Variable Lemma 4.2.

4.9. Consider the BinSearch program studied in Section 4.5. Complete the
proof of partial correctness discussed there by justifying the application of
the consequence rule used in the proof outline of the else branch.

4.10. Consider the following iterative version of the BinSearch program stud-
ied in Section 4.5:

BinSearch ≡ mid := (first + last) div 2;
while first 6= last ∧ a[mid] 6= val do

if a[mid] < val
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then first := mid + 1
else last := mid
fi;
mid := (first + last) div 2

od

Prove partial and total correctness of this program w.r.t. the pre- and post-
conditions used in Section 4.5.

4.11. Allow the failure statements in the main statements and procedure
bodies. Add to the proof systems PR and TR the corresponding failure rules
from Section 3.7 and prove the counterparts of the Soundness Corollary 4.1
and Soundness Corollary 4.2.

4.6 Bibliographic Remarks

Procedures (with parameters) were initially introduced in the programming
language FORTRAN. However, recursion was not allowed. Recursive proce-
dures were first introduced in ALGOL 60. Their semantics was defined by the
so-called copy rule. For the case of parameterless procedures this rule says
that at runtime a procedure call is treated like the procedure body inserted
at the place of call, see, e.g., Grau, Hill, and Langmaack [1967].

Historically, reasoning about recursive programs focused initially on re-
cursive program schemes and recursively defined functions, see, e.g., Loeckx
and Sieber [1987]. The recursion rule is modelled after the so-called Scott
induction rule that appeared first in the unpublished manuscript Scott and
de Bakker [1969].

Example 4.4 is taken from Apt [1981]. It is also shown there that the con-
sidered proof system for partial correctness is incomplete if in the subsidiary
proofs used in the premises of the recursion rule only the axioms and proof
rules of the PW proof system are used. This clarifies why in Example 4.4
and in Section 4.5 we used in these subsidiary proofs the substitution and
invariance rules. Completeness of the resulting proof system for partial cor-
rectness is established in Apt [1981]. Recursion II rule is taken from America
and de Boer [1990], where also the completeness of the proof system TR for
total correctness is established.
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N OW THAT WE understand the semantics and verification of re-

cursive procedures without parameters, we extend our study to the

case of recursive procedures with parameters. The presentation follows the

one of the last chapter. In Section 5.1 we introduce the syntax of recursive

procedures with parameters. We deal here with the most common parameter

mechanism, namely call-by-value. To properly capture its meaning we need

to introduce a block statement that allows us to distinguish between local

and global variables.

In Section 5.2 we introduce the operational semantics that appropriately

modifies the semantics of recursive procedures from the last chapter. The

block statement is used to define the meaning of procedure calls. Then, in

Section 5.3 we focus on program verification. The approach is a modification

of the approach from the previous chapter, where the additional difficulty

consists of a satisfactory treatment of parameters. Finally, as a case study,

we consider in Section 5.5 the correctness of the Quicksort program.
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5.1 Syntax

When considering recursive procedures with parameters we need to distin-
guish between local and global variables. To this end, we consider an exten-
sion of the syntax of while programs studied in Chapter 3 in which a block
statement is allowed. It is introduced by the following clause:

S ::= begin local x̄ := t̄; S1 end.

Informally, a block statement introduces a non-empty sequence of local
variables, all of which are explicitly initialized by means of a parallel assign-
ment, and provides an explicit scope for these local variables. The precise
explanation of a scope is more complicated because the block statements can
be nested.

Assuming x̄ = x1, . . ., xk and t̄ = t1, . . ., tk, each occurrence of a local
variable xi within the statement S1 and not within another block statement
that is a subprogram of S1 refers to the same variable. Each such variable
xi is initialized to the expression ti by means of the parallel assignment
x̄ := t̄. Further, given a statement S′ such that begin local x̄ := t̄; S1 end
is a subprogram of S′, all occurrences of xi in S′ outside this block statement
refer to some other variable(s). Therefore we define

change(begin local x̄ := t̄; S1 end) = change(S1) \ {x̄}.

Additionally, the procedure calls with parameters are introduced by the
following clause:

S ::= P (t1, . . . , tn).

Here P is a procedure identifier and t1, . . . , tn are expressions called actual pa-
rameters. To ensure that our analysis generalizes that of the previous chapter
we assume that n ≥ 0. When n = 0 the procedure P has no actual parame-
ters and we are within the framework of the previous chapter. The statement
P (t1, . . . , tn) is called a procedure call .

Procedures are now defined by declarations of the form

P (u1, . . . , un) :: S.

Here u1, . . . , un are distinct simple variables, called formal parameters of the
procedure P , and S is the body of the procedure P . From now on, as in the
previous chapter, we assume a given set of procedure declarations D such
that each procedure that appears in D has a unique declaration in D.

A recursive program consists of a main statement S built according to the
syntax of this section and a given set D of such procedure declarations. We
assume as in the previous chapter that all procedures whose calls appear in
the main statement are declared in D. Additionally, we assume now that the
procedure calls are well-typed, which means that the numbers of formal and
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actual parameters agree and that for each parameter position the types of
the corresponding actual and formal parameters coincide. If D is clear from
the context we refer to the main statement as a recursive program.

Given a recursive program, we call a variable xi local if it appears within
a statement S such that begin local x̄ := t̄; S end with x̄ = x1, . . ., xk is a
substatement of the main statement or of one of its procedure bodies, and
global otherwise. To avoid possible name clashes between local and global
variables of a program we simply assume that these sets of variables are
disjoint. So given the procedure declaration

P :: if x = 1 then b := true else b := false fi

the main statement

S ≡ begin local x := 1; P end

is not allowed. If it were, the semantics we are about to introduce would allow
us to conclude that {x = 0} S {b} holds. However, the customary semantics
of the programs in the presence of procedures prescribes that in this case
{x = 0} S {¬b} should hold, as the meaning of a program should not depend
on the choice of the names of its local variables. (This is a consequence of the
so-called static scope of the variables that we assume here.)

This problem is trivially solved by just renaming the ‘offensive’ lo-
cal variables to avoid name clashes, so by considering here the program
begin local y := 1; P end instead. In what follows, when considering a re-
cursive program S in the context of a set of procedure declarations D we
always implicitly assume that the above syntactic restriction is satisfied.

Note that the above definition of programs puts no restrictions on the
actual parameters in procedure calls; in particular they can be formal pa-
rameters or global variables. Let us look at an example.

Example 5.1. Using recursive programs with parameters, the factorial pro-
cedure from Example 4.1 can be rewritten as follows:

Fac(u) :: if u = 0 then y := 1 else Fac(u − 1); y := y · u fi. (5.1)

Here u is a formal parameter, u−1 is an actual parameter, while y is a global
variable. ⊓⊔

The above version of the factorial procedure does not use any local vari-
ables. The procedure below does.

Example 5.2. Consider the following procedure Ct, standing for ‘Count-
down’:

Ct(u) :: begin local v := u − 1; if v 6= 0 then Ct(v) fi end. (5.2)
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Here v is a local variable and is also used as an actual parameter. This
procedure has no global variables. ⊓⊔

So far we did not clarify why the block statement is needed when consid-
ering procedures with parameters. Also, we did not discuss the initialization
of local variables. We shall consider these matters after having provided se-
mantics to the considered class of programs.

5.2 Semantics

In order to define the semantics of the considered programs we extend the
transition system of the previous chapter to take care of the block statement
and of the procedure calls in the presence of parameters. The transition axiom
for the block statement, given below, ensures that

• the local variables are initialized as prescribed by the parallel assignment,
• upon termination, the global variables whose names coincide with the local

variables are restored to their initial values, held at the beginning of the
block statement.

(ix) < begin local x̄ := t̄; S end, σ > → < x̄ := t̄; S; x̄ := σ(x̄), σ >.

From now on, to ensure a uniform presentation for the procedures with and
without parameters we identify the statement begin local ū := t̄; S end,
when ū is the empty sequence, with S. We then add the following transition
axiom that deals with the procedure calls with parameters:

(x) < P (t̄), σ > → < begin local ū := t̄; S end, σ >,

where P (ū) :: S ∈ D.

So when the procedure P has no parameters, this transition axiom reduces
to the transition axiom (viii).

In this axiom the formal parameters are simultaneously instantiated to
the actual parameters and subsequently the procedure body is executed. In
general, it is crucial that the passing of the values of the actual parameters
to the formal ones takes place by means of a parallel assignment and not by
a sequence of assignments. For example, given a procedure P (u1, u2) :: S and
the call P (u1 + 1, u1), the parallel assignment u1, u2 := u1 + 1, u1 assigns a
different value to the formal parameter u2 than the sequence
u1 := u1 + 1; u2 := u1.

The block statement is needed to limit the scope of the formal parameters
so that they are not accessible after termination of the procedure call. Also
it ensures that the values of the formal parameters are not changed by a
procedure call: note that, thanks to the semantics of a block statement, upon
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termination of a procedure call the formal parameters are restored to their
initial values.

This transition axiom clarifies that we consider here the call-by-value pa-
rameter mechanism, that is, the values of the actual parameters are assigned
to the formal parameters.

The following example illustrates the uses of the new transition axioms.

Example 5.3. Assume the declaration (5.1) of the Fac procedure. Then we
have the following computation of the main statement Fac(x), where σ is a
proper state with σ(x) = 2:

< Fac(x), σ >
→ < begin local u := x;

if u = 0 then y := 1 else Fac(u − 1); y := y · u fi end, σ >
→ < u := x; if u = 0 then y := 1 else Fac(u − 1); y := y · u fi;

u := σ(u), σ >
→ < if u = 0 then y := 1 else Fac(u − 1); y := y · u fi;

u := σ(u), σ[u := 2] >
→ < Fac(u − 1); y := y · u; u := σ(u), σ[u := 2] >
→ < begin local u := u − 1;

if u = 0 then y := 1 else Fac(u − 1); y := y · u fi end;
y := y · u; u := σ(u), σ[u := 2] >

→ < u := u − 1; if u = 0 then y := 1 else Fac(u − 1); y := y · u fi;
u := 2; y := y · u; u := σ(u), σ[u := 2] >

→ < if u = 0 then y := 1 else Fac(u − 1); y := y · u fi;
u := 2; y := y · u; u := σ(u), σ[u := 1] >

→ < Fac(u − 1); y := y · u; u := 2; y := y · u; u := σ(u), σ[u := 1] >
→ < begin local u := u − 1;

if u = 0 then y := 1 else Fac(u − 1); y := y · u fi end;
y := y · u; u := 2; y := y · u; u := σ(u), σ[u := 1] >

→ < u := u − 1; if u = 0 then y := 1 else Fac(u − 1); y := y · u fi;
u := 1; y := y · u; u := 2; y := y · u; u := σ(u), σ[u := 1] >

→ < if u = 0 then y := 1 else Fac(u − 1); y := y · u fi; u := 1;
y := y · u; u := 2; y := y · u; u := σ(u), σ[u := 0] >

→ < y := 1; u := 1; y := y · u; u := 2; y := y · u; u := σ(u), σ[u := 0] >
→ < u := 1; y := y · u; u := 2; y := y · u; u := σ(u), σ[u, y := 0, 1] >
→ < y := y · u; u := 2; y := y · u; u := σ(u), σ[u, y := 1, 1] >
→ < u := 2; y := y · u; u := σ(u), σ[u, y := 1, 1] >
→ < y := y · u; u := σ(u), σ[u, y := 2, 1] >
→ < u := σ(u), σ[u, y := 2, 2] >
→ < E, σ[y := 2] >

⊓⊔

So in the above example during the computation of the procedure call
Fac(x) block statements of the form begin local u := u − 1;S end are in-
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troduced. The assignments u := u − 1 result from the calls Fac(u − 1) and
are used to instantiate the formal parameter u to the value of the actual
parameter u − 1 that refers to a global variable u.

In general, block statements of the form begin local x̄ := t̄; S end, in
which some variables from x̄ appear in t̄, arise in computations of the recursive
programs in which for some procedures some formal parameters appear in
an actual parameter. Such block statements also arise in reasoning about
procedure calls.

Exercise 5.1 shows that once we stipulate that actual parameters do not
contain formal parameters, such block statements cannot arise in the compu-
tations. We do not impose this restriction on our programs since this leads
to a limited class of recursive programs. For example, the factorial procedure
defined above does not satisfy this restriction.

The partial and total correctness semantics are defined exactly as in the
case of the recursive programs considered in the previous chapter.

Example 5.4. Assume the declaration (5.1) of the factorial procedure. Then
the following holds for the main statement Fac(x):

• if σ(x) ≥ 0 then

M[[Fac(x)]](σ) = Mtot [[Fac(x)]](σ) = {σ[y := σ(x)!]},

• if σ(x) < 0 then

M[[Fac(x)]](σ) = ∅ and Mtot [[Fac(x)]](σ) = {⊥}.
⊓⊔

Note that the introduced semantics treats properly the case when an actual
parameter of a procedure call contains a global variable of the procedure body.
To illustrate this point consider the call Fac(y) in a state with σ(y) = 3.
Then, as in Example 5.3, we can calculate that the computation starting in
< Fac(y), σ > terminates in a final state τ with τ(y) = 6. So the final value
of y is the factorial of the value of the actual parameter, as desired.

Finally, we should point out some particular characteristics of our seman-
tics of block statements in the case when in begin local x̄ := t̄; S end a
variable from x̄ appears in t̄. For example, upon termination of the program

begin local x := x + 1; y := x end; begin local x := x + 1; z := x end

the assertion y = z holds. The intuition here is that in each initialization
x := x + 1 the second occurrence of x refers to a different variable than the
first ocurrence of x, namely to the same variable outside the block statement.
Therefore y = z holds upon termination. This corresponds with the semantics
of the procedure calls given by the transition axiom (x) when the actual
parameters contain formal parameters. Then this transition axiom generates
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a block statement the initialization statement of which refers on the left-
hand side to the formal parameters and on the right-hand side to the actual
parameters of the procedure call.

As in the previous chapter we now consider syntactic approximations of the
recursive programs and express their semantics in terms of these approxima-
tions. The following lemma is a counterpart of the Input/Output Lemma 4.1.
As in the previous chapter, we write here D | S when we consider the program
S in the context of the set D of procedure declarations. The complication
now is that in the case of procedure calls variable clashes can arise. We deal
with them in the same way as in the definition of the transition axiom for
the procedure call.

Given D = P1(ū1) :: S1, . . . , Pn(ūn) :: Sn and a recursive program S, we
define the kth syntactic approximation Skof S by induction on k ≥ 0:

S0 = Ω,
Sk+1 = S[Sk

1 /P1, . . . , S
k
n/Pn],

where S[R1/P1, . . . , Rn/Pn] is the result of a simultaneous replacement in S
of each procedure identifier Pi by the statement Ri. For procedure calls this
replacement is defined by

Pi(t̄)[R1/P1, . . . , Rn/Pn] ≡ Ri(t̄) ≡ begin local ūi := t̄; Ri end.

Furthermore, let Dk abbreviate D = P1(ū1) :: Sk
1 , . . . , Pn(ūn) :: Sk

n and let
N stand for M or Mtot . The following lemma collects the properties of N
we need.

Lemma 5.1. (Input/Output)

(i) N [[Dk | S]] = N [[Sk+1]].
(ii) N [[D | S]] = N [[D | S[S1/P1, . . . , Sn/Pn]]].

In particular, N [[D | Pi(t̄)]] = N [[D | begin local ūi := t̄; Si end]]
for i = 1, . . ., n.

(iii) M[[D | S]] =
⋃∞

k=0 M[[Sk]].

Proof. See Exercise 5.2. ⊓⊔

Note that, as in Chapter 4, each Sk is a statement without procedure calls.

5.3 Verification

The notions of partial and total correctness of the recursive programs with
parameters are defined as in Chapter 4. First, we introduce the following rule
that deals with the block statement:
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RULE 10: BLOCK

{p} x̄ := t̄; S {q}

{p} begin local x̄ := t̄; S end {q}

where {x̄} ∩ free(q) = ∅.

Example 5.5. Let us return to the program

begin local x := x + 1; y := x end; begin local x := x + 1; z := x end.

Denote it by S. We prove {true} S {y = z}. It is straightforward to derive

{x + 1 = u} x := x + 1; y := x {y = u}.

By the above block rule, we then obtain

{x + 1 = u} begin local x := x + 1; y := x end {y = u}.

Applying next the invariance rule with x + 1 = u and (a trivial instance of)
the consequence rule we derive

{x + 1 = u} begin local x := x + 1; y := x end {y = u ∧ x + 1 = u}.
(5.3)

Similarly, we can derive

{x + 1 = u} begin local x := x + 1; z := x end {z = u}.

Applying to this latter correctness formula the invariance rule with y = u
and the consequence rule we obtain

{y = u ∧ x + 1 = u} begin local x := x + 1; z := x end {y = z}. (5.4)

By the composition rule applied to (5.3) and (5.4), we obtain

{x + 1 = u} S {y = z},

from which the desired result follows by an application of the ∃-introduction
rule (to eliminate the variable u in the precondition), followed by a trivial
application of the consequence rule. ⊓⊔

Partial Correctness: Non-recursive Procedures

Consider now partial correctness of recursive programs. The main issue is
how to deal with the parameters of procedure calls. Therefore, to focus on
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this issue we discuss the parameters of non-recursive procedures first. The
following copy rule shows how to prove correctness of non-recursive method
calls:

{p} begin local ū := t̄; S end {q}

{p} P (t̄) {q}

where P (ū) :: S ∈ D .

Example 5.6. Let D contain the following declaration

add(x) :: sum := sum + x.

It is straightforward, using the above block rule, to derive

{sum = z} begin local x := 1; sum := sum + x end {sum = z + 1}

and, similarly,

{sum = z + 1} begin local x := 2; sum := sum + x end {sum = z + 3}.

By applying the above copy rule we then derive

{sum = z} add(1) {sum = z + 1}

and
{sum = z + 1} add(2) {sum = z + 3}.

We conclude

{sum = z} add(1); add(2) {sum = z + 3}

using the composition rule. ⊓⊔

In many cases, however, we can also prove procedure calls correct by in-
stantiating generic procedure calls, instead of proving for each specific call its
corresponding block statement correct. By a generic call of a procedure P we
mean a call of the form P (x̄), where x̄ is a sequence of fresh variables which
represent the actual parameters. Instantiation of such calls is then taken care
of by the following auxiliary proof rule that refers to the set of procedure
declarations D :

RULE 11: INSTANTIATION

{p} P (x̄) {q}

{p[x̄ := t̄]} P (t̄) {q[x̄ := t̄]}
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where var(x̄)∩var(D) = var(t̄)∩change(D) = ∅. The set change(D) denotes
all the global variables that can be modified by the body of some procedure
declared by D.

Example 5.7. Let again D contain the following declaration

add(x) :: sum := sum + x.

In order to prove

{sum = z} add(1); add(2) {sum = z + 3}

we now introduce the following correctness formula

{sum = z} add(y) {sum = z + y}

of a generic call add(y). We can derive this correctness formula from

{sum = z} begin local x := y; sum := sum + x end {sum = z + y}

by an application of the above copy rule. By the instantiation rule, we then
obtain

{sum = z} add(1) {sum = z + 1} and {sum = z} add(2) {sum = z + 2},

instantiating y by 1 and 2, respectively, in the above correctness formula of
the generic call add(y). An application of the substitution rule, replacing z
in {sum = z} add(2) {sum = z + 2} by z + 1, followed by an application of
the consequence rule, then gives us

{sum = z + 1} add(2) {sum = z + 3}.

We conclude
{sum = z} add(1); add(2) {sum = z + 3}

using the composition rule. ⊓⊔

Suppose now that we established {p} S {q} in the sense of partial cor-
rectness for a while program S and that S is the body of a procedure
P , i.e., that P (ū) :: S is a given procedure declaration. Can we con-
clude then {p} P (ū) {q}? The answer is of course, ‘no’. Take for example
S ≡ u := 1. Then {u = 0} S {u = 1} holds, but the correctness formula
{u = 0} P (ū) {u = 1} is not true. In fact, by the semantics of the procedure
calls, {u = 0} P (ū) {u = 0} is true. However, we cannot derive this formula
by an application of the copy rule because the proof rule for block statements
does not allow the local variable u to occur (free) in the postcondition. The
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following observation identifies the condition under which the above conclu-
sion does hold.

Lemma 5.2. (Transfer) Consider a while program S and a procedure P
declared by P (ū) :: S. Suppose that ⊢ {p} S {q} and var(ū)∩change(S) = ∅.
Then

{p} P (ū) {q}

can be proved in the proof system PRP.

Proof. Let x̄ be a sequence of simple variables of the same length as ū such
that var(x̄) ∩ var(p, S, q) = ∅. By the parallel assignment axiom 2′,

{p[ū := x̄]} ū := x̄ {p ∧ ū = x̄}.

Further, by the assumption about ū and the invariance rule,

{p ∧ ū = x̄} S {q ∧ ū = x̄},

so by the composition rule,

{p[ū := x̄]} ū := x̄; S {q ∧ ū = x̄}.

But q ∧ ū = x̄ → q[ū := x̄], so by the consequence rule,

{p[ū := x̄]} ū := x̄; S {q[ū := x̄]}.

Further var(ū) ∩ free(q[ū = x̄]) = ∅, so by the block rule 10,

{p[ū := x̄]} begin local ū := x̄; S end {q[ū := x̄]}.

Hence by the above copy rule,

{p[ū := x̄]} P (x̄) {q[ū := x̄]}.

Now note that var(x̄)∩var(p, q) = ∅ implies both p[ū := x̄][x̄ := ū] ≡ p and
q[ū := x̄][x̄ := ū] ≡ q. Moreover, by the assumption var(ū) ∩ change(S) = ∅,
so by the instantiation rule 11 {p} P (ū) {q}. ⊓⊔

It should be noted that the use of the instantiation rule is restricted. It
cannot be used to reason about a call P (t̄), where some variables appearing
in t̄ are changed by the body of P itself.

Example 5.8. Let again D contain the declaration

add(x) :: sum := sum + x.

We cannot obtain the correctness formula

{sum = z} add(sum) {sum = z + z}
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by instantiating some assumption about a generic call add(y) because sum
is changed by the body of add. ⊓⊔

Partial Correctness: Recursive Procedures

When we deal only with one recursive procedure and use the procedure call
as the considered recursive program, the above copy rule needs to be modified
to

{p} P (t̄) {q} ⊢ {p} begin local ū := t̄; S end {q}

{p} P (t̄) {q}

where D = P (ū) :: S.
The provability relation ⊢ here refers to the axioms and proof rules of

the proof system PW extended with the block rule 10, and appropriately
modified auxiliary axioms and proof rules introduced in Section 3.8. This
modification consists of a reference to the extended set change(S), as defined
in Section 4.3. Note that the presence of procedure calls with parameters
does not affect the definition of change(S).

In the case of a program consisting of mutually recursive procedure dec-
larations we have the following generalization of the above rule.

RULE 12: RECURSION III

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢ {p} S {q},
{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢

{pi} begin local ūi := t̄i; Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ū1) :: Si ∈ D for i ∈ {1, . . ., n}.

Note that this rule allows us to introduce an arbitrary set of assumptions
about specific calls of procedures declared by D. In particular, we do not
exclude that Pi ≡ Pj for i 6= j.

To deal with recursion in general we modify appropriately the approach of
Chapter 4. As in Section 4.3, we modify the auxiliary axioms and proof rules
introduced in Section 3.8 so that the conditions for specific variables refer to
the extended set change(S).

To prove partial correctness of recursive programs with parameters we use
then the following proof system PRP :

PROOF SYSTEM PRP :
This system consists of the group of axioms
and rules 1–6, 10–12, and A2–A6.
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Thus PRP is obtained by extending the proof system PW by the block rule 10,
the instantiation rule 11, the recursion rule 12, and the auxiliary rules A2–A6.

Next, we prove a generic invariance property of arbitrary procedure calls.
This property states that the values of the actual parameters remain unaf-
fected by a procedure call when none of its variables can be changed within
the set of procedure declarations D.

Lemma 5.3. (Procedure Call) Suppose that {z̄} ∩ (var(D) ∪ var(t̄)) = ∅
and var(t̄) ∩ change(D) = ∅. Then

{z̄ = t̄} P (t̄) {z̄ = t̄}

can be proved in the proof system PRP.

Proof. First note that for each procedure declaration Pi(ū) :: Si from D the
correctness formula

{z̄ = x̄} begin local ūi := x̄i; Si end {z̄ = x̄},

where var(x̄)∩ var(D) = ∅, holds by the adopted modification of the invari-
ance axiom. This yields by the recursion III rule (no assumptions are needed
here)

{z̄ = x̄} P (x̄) {z̄ = x̄},

from which the conclusion follows by the instantiation axiom. ⊓⊔

We now use the above observation to reason about a specific recursive
program.

Example 5.9. Assume the declaration (5.1) of the factorial procedure. We
first prove the correctness formula

{x ≥ 0} Fac(x) {y = x!} (5.5)

in the proof system PRP. To this end, we introduce the assumption

{x ≥ 0} Fac(x) {y = x!}

and show that

{x ≥ 0} Fac(x) {y = x!} ⊢ {x ≥ 0} begin local u := x; S end {y = x!},

where
S ≡ if u = 0 then y := 1 else Fac(u − 1); y := y · u fi

is the procedure body of Fac.
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Note that {x, u} ∩ change(S) = ∅, so we can apply the instantiation rule
to the assumption to obtain

{u − 1 ≥ 0} Fac(u − 1) {y = (u − 1)!}

and then apply the invariance rule to obtain

{x = u ∧ u − 1 ≥ 0} Fac(u − 1) {x = u ∧ y = (u − 1)!}.

It is clear how to extend the notion of a proof outline to programs that in-
clude procedure calls with parameters and the block statement. So we present
the desired proof in the form of a proof outline, given in Figure 5.1. It uses
the last correctness formula as an assumption. Note that the block rule can
be applied here since u 6∈ free(y = x!). The desired conclusion (5.5) now
follows by the simplified form of the recursion III rule.

{x ≥ 0}
begin local
{x ≥ 0}
u := x
{x = u ∧ u ≥ 0}
if u = 0
then

{x = u ∧ u ≥ 0 ∧ u = 0}
{x = u ∧ 1 = u!}
y := 1
{x = u ∧ y = u!}

else
{x = u ∧ u ≥ 0 ∧ u 6= 0}
{x = u ∧ u − 1 ≥ 0}
Fac(u − 1);
{x = u ∧ y = (u − 1)!}
{x = u ∧ y · u = u!}
y := y · u
{x = u ∧ y = u!}

fi
{x = u ∧ y = u!}
{y = x!}
end
{y = x!}

Fig. 5.1 Proof outline showing partial correctness of the factorial procedure.
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Additionally, by the generic property established in the Procedure Call
Lemma 5.3, we have

{z = x} Fac(x) {z = x}, (5.6)

that is, the call Fac(x) does not modify x. Combining the two correctness
formulas by the conjunction rule we obtain

{z = x ∧ x ≥ 0} Fac(x) {z = x ∧ y = x!},

which specifies that Fac(x) indeed computes in the variable y the factorial
of the original value of x. ⊓⊔

Modularity

In the example above we combined two correctness formulas derived indepen-
dently. In some situations it is helpful to reason about procedure calls in a
modular way, by first deriving one correctness formula and then using it in a
proof of another correctness formula. The following modification of the above
simplified version of the recursion III rule illustrates this principle, where we
limit ourselves to a two-stage proof and one procedure:

RULE 12 ′: MODULARITY

{p0} P (t̄) {q0} ⊢ {p0} begin local ū := t̄; S end {q0},
{p0} P (t̄) {q0}, {p} P (s̄) {q} ⊢ {p} begin local ū := s̄; S end {q}

{p} P (s̄) {q}

where D = P (ū) :: S.

So first we derive an auxiliary property, {p0} P (t̄) {q0} that we subse-
quently use in the proof of the ‘main’ property, {p} P (s̄) {q}. In general,
more procedures may be used and an arbitrary ‘chain’ of auxiliary proper-
ties may be constructed. We shall illustrate this approach in the case study
considered at the end of this chapter.

Total Correctness

Total correctness of recursive programs is dealt with analogously as in the
case of parameterless procedures. The corresponding proof rule is an appro-
priate modification of recursion III rule. The provability sign ⊢ refers now
to the proof system TW extended by the auxiliary rules, modified as ex-
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plained earlier in this section, and the block and instantiation rules. It has
the following form:

RULE 13: RECURSION IV

{p1} P1(ē1) {q1}, . . . , {pn} Pn(ēn) {qn} ⊢ {p} S {q},
{p1 ∧ t < z} P1(ē1) {q1}, . . . , {pn ∧ t < z} Pn(ēn) {qn} ⊢

{pi ∧ t = z} begin local ūi := ēi; Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ūi) :: Si ∈ D, for i ∈ {1, . . ., n}, and z is an integer variable that
does not occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs
as a constant, which means that in these proofs neither the ∃-introduction
rule A5 nor the substitution rule A7 is applied to z. In these proofs we
allow the axioms and proof rules of the proof system TW extended with the
block rule, the instantiation rule and appropriately modified auxiliary axioms
and proof rules introduced in Section 3.8. This modification consists of the
reference to the extended set change(S), as defined in Section 4.3.

To prove total correctness of recursive programs with parameters we use
the following proof system TRP :

PROOF SYSTEM TRP :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 11, 13, and A3–A6.

Thus TRP is obtained by extending the proof system TW by the block rule 10,
the instantiation rule 11, the recursion rule 13, and the auxiliary rules A3–A6.

As before, in the case of one recursive procedure this rule can be simplified
to

{p ∧ t < z} P (ē) {q} ⊢ {p ∧ t = z} begin local ū := ē; S end {q},
p → t ≥ 0

{p} P (ē) {q}

where D = P (ū) :: S and z is an integer variable that does not occur in p, t, q
and S and is treated in the proof as a constant.

Example 5.10. To illustrate the use of the simplified rule for total correct-
ness we return to Example 5.9. We proved there the correctness formula

{x ≥ 0} Fac(x) {y = x!}
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in the sense of partial correctness, assuming the declaration (5.1) of the fac-
torial procedure.

To prove termination it suffices to establish the correctness formula

{x ≥ 0} Fac(x) {true}.

We choose
t ≡ x

as the bound function. Then x ≥ 0 → t ≥ 0. Assume now

{x ≥ 0 ∧ x < z} Fac(x) {true}.

We have u 6∈ change(D), so by the instantiation rule

{u − 1 ≥ 0 ∧ u − 1 < z} Fac(u − 1) {true}.

We use this correctness formula in the proof outline presented in Figure 5.2
that establishes that

{x ≥ 0 ∧ x < z} Fac(x) {true}
⊢ {x ≥ 0 ∧ x = z} begin local u := x; S end {true}.

Applying now the simplified form of the recursion IV rule we get the
desired conclusion. ⊓⊔

Soundness

We now prove the soundness of the proof system PRP for partial correctness
of recursive programs with parameters. The establish soundness of the block
rule we need the following lemma.

Lemma 5.4. (Block) For all proper states σ and τ ,

τ ∈ M[[begin local x̄ := t̄; S end]](σ)

implies that for some sequence of values d̄

τ [x̄ := d̄] ∈ M[[x̄ := t̄; S]](σ).

Proof. See Exercise 5.3. ⊓⊔

Theorem 5.1. (Soundness of the Block Rule) Suppose that

|= {p} x̄ := t̄; S {q},
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{x ≥ 0 ∧ x = z}
begin local
{x ≥ 0 ∧ x = z}
u := x
{u ≥ 0 ∧ u = z}
if u = 0
then

{u ≥ 0 ∧ u = z ∧ u = 0}
{true}
y := 1
{true}

else
{u ≥ 0 ∧ u = z ∧ u 6= 0}
{u − 1 ≥ 0 ∧ u − 1 < z}
Fac(u − 1);
{true}
y := y · u
{true}

fi
{true}
end
{true}

Fig. 5.2 Proof outline showing termination of the factorial procedure.

where {x̄} ∩ free(q) = ∅. Then

|= {p} begin local x̄ := t̄; S end {q}.

Proof. Suppose that σ |= p and τ ∈ M[[begin local x̄ := t̄; S end]](σ).
Then by the Block Lemma 5.4 for some sequence of values d̄

τ [x̄ := d̄] ∈ M[[x̄ := t̄; S]](σ).

So by the assumption τ [x̄ := d̄] |= q. But {x̄}∩ free(q) = ∅, hence τ |= q. ⊓⊔

To deal with the instantiation rule we shall need the following observation
analogous to the Change and Access Lemma 3.4.

Lemma 5.5. (Change and Access) Assume that

D = P1(ū1) :: S1, . . . , Pn(ūn) :: Sn.

For all proper states σ and τ , i = 1, . . . , n and sequences of expressions t̄
such that var(t̄) ∩ change(D) = ∅,
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τ ∈ M[[Pi(t̄)]](σ)

implies
τ [x̄ := σ(t̄)] ∈ M[[Pi(x̄)]](σ[x̄ := σ(t̄)]),

whenever var(x̄) ∩ var(D) = ∅.

Proof. See Exercise 5.4. ⊓⊔

Theorem 5.2. (Soundness of the Instantiation Rule)
Assume that D = P1(ū1) :: S1, . . . , Pn(ūn) :: Sn and suppose that

|= {p} Pi(x̄) {q},

where var(x̄) ∩ var(D) = ∅. Then

|= {p[x̄ := t̄]} Pi(t̄) {q[x̄ := t̄]}

for all sequences of expressions t̄ such that var(t̄) ∩ change(D) = ∅.

Proof. Suppose that σ |= p[x̄ := t̄] and τ ∈ M[[Pi(t̄)]](σ). By the Simulta-
neous Substitution Lemma 2.5, σ[x̄ := σ(t̄)] |= p, and by the Change and
Access Lemma 5.5,

τ [x̄ := σ(t̄)] ∈ M[[Pi(x̄)]](σ[x̄ := σ(t̄)]).

Hence by the assumption about the generic procedure call Pi(x̄) we have
τ [x̄ := σ(t̄)] |= q, so, again by the Simultaneous Substitution Lemma 2.5,
τ |= q[x̄ := t̄]. ⊓⊔

Finally, we deal with the recursion III rule. Recall that the provability
sign ⊢ refers to the proof system PW augmented with the (modified as ex-
plained earlier in this section) auxiliary axioms and rules and the block and
instantiation rules, in the implicit context of the set of procedure declarations
D.

We shall need a counterpart of the Soundness Lemma 4.1, in which we use
this implicit context D, as well. We write here

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} |= {p} S {q}

when the following holds:

for all sets of procedure declarations D′ such that var(D′) ⊆ var(D)
if |= {pi} D′ | Pi(t̄i) {qi}, for i ∈ {1, . . . , n}, then |= {p} D′ | S {q},

where, as in the Input/Output Lemma 5.1, D′ | S means that we evaluate S
in the context of the set D′ of the procedure declarations.
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Theorem 5.3. (Soundness of Proof from Assumptions)
We have that

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢ {p} S {q}

implies

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} |= {p} S {q}.

Proof. See Exercise 5.5. ⊓⊔

Theorem 5.4. (Soundness of the Recursion III Rule)
Assume that Pi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}. Suppose that

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄1) {qn} ⊢ {p} S {q},

and for i ∈ {1, . . . , n}

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢
{pi} begin local ūi := t̄i; Si end {qi}.

Then
|= {p} S {q}.

Proof. We proceed as in the proof of the Soundness Theorem 4.2. By the
Soundness Theorem 5.3

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} |= {p} S {q} (5.7)

and for i ∈ {1, . . . , n}

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn}
|= {pi} begin local ūi := t̄i; Si end {qi}.

(5.8)

We first show
|= {pi} Pi(t̄i) {qi} (5.9)

for i ∈ {1, . . . , n}.
In the proof write D′ | S when we mean S in the context of the set D′ of

procedure declarations. By the Input/Output Lemma 5.1(i) and (iii) we have

M[[D | Pi(t̄i)]]

=
⋃∞

k=0 M[[Pi(t̄i)
k]]

= M[[Pi(t̄i)
0]] ∪

⋃∞
k=0 M[[Dk | Pi(t̄i)]]

=
⋃∞

k=0 M[[Dk | Pi(t̄i)]],

so
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|= {pi} D | Pi(t̄i) {qi} iff for all k ≥ 0 we have |= {pi} Dk | Pi(t̄i) {qi}.

We now prove by induction on k that for all k ≥ 0

|= {pi} Dk | Pi(t̄i) {qi},

for i ∈ {1, . . . , n}.
Induction basis. Since S0

i = Ω, by definition |= {pi} D0 | Pi(t̄i) {qi}, for
i ∈ {1, . . . , n}.

Induction step. By the induction hypothesis we have

|= {pi} Dk | Pi(t̄i) {qi},

for i ∈ {1, . . . , n}. Fix i ∈ {1, . . ., n}. Since var(Dk) ⊆ var(D), by (5.8) we
obtain

|= {pi} Dk | begin local ūi := t̄i; Si end {qi}.

Next, by the Input/Output Lemma 5.1(i) and (ii)

M[[Dk | begin local ūi := t̄i; Si end]]

= M[[(begin local ūi := t̄i; Si end)k+1]]

= M[[Dk+1 | (begin local ūi := t̄i; Si end)k+1]]

= M[[Dk+1 | Pi(t̄i)]],

hence |= {pi} Dk+1 | Pi(t̄i) {qi}.

This proves (5.9) for i ∈ {1, . . . , n}. Now (5.7) and (5.9) imply
|= {p} S {q} (where we refer to the set D of procedure declarations). ⊓⊔

With this theorem we can state the following soundness result.

Corollary 5.1. (Soundness of PRP) The proof system PRP is sound for
partial correctness of recursive programs with parameters.

Proof. The proof combines Theorems 5.1, 5.2 and 5.4 with Theorem 3.1(i)
on soundness of the proof system PW and Theorem 3.7(i),(ii) on soundness
of the auxiliary rules. ⊓⊔

Next, we establish soundness of the proof system TRP for total correctness
of recursive programs with parameters. We proceed in an analogous way as
in the case of the parameterless procedures.

Theorem 5.5. (Soundness of TRP) The proof system TRP is sound for
total correctness of recursive programs with parameters.
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Proof. See Exercise 5.7. ⊓⊔

5.4 Case Study: Quicksort

In this section we establish correctness of the classical Quicksort sorting pro-
cedure, originally introduced in Hoare[1962]. For a given array a of type
integer → integer and integers x and y this algorithm sorts the section
a[x : y] consisting of all elements a[i] with x ≤ i ≤ y. Sorting is accomplished
‘in situ’, i.e., the elements of the initial (unsorted) array section are permuted
to achieve the sorting property. We consider here the following version of
Quicksort close to the one studied in Foley and Hoare [1971]. It consists of a
recursive procedure Quicksort(m,n), where the formal parameters m,n and
the local variables v, w are all of type integer:

Quicksort(m,n) ::
if m < n
then Partition(m,n);

begin
local v, w := ri, le;
Quicksort(m, v);
Quicksort(w, n)
end

fi

Quicksort calls a non-recursive procedure Partition(m,n) which partitions
the array a suitably, using global variables ri, le, pi of type integer standing
for pivot, left, and right elements:

Partition(m,n) ::
pi := a[m];
le, ri := m,n;
while le ≤ ri do

while a[le] < pi do le := le + 1 od;
while pi < a[ri] do ri := ri − 1 od;
if le ≤ ri then

swap(a[le], a[ri]);
le, ri := le + 1, ri − 1

fi
od

Here, as in Section 3.9, for two given simple or subscripted variables u and v
the program swap(u, v) is used to swap the values of u and v. So we stipulate
that the following correctness formula

{x = u ∧ y = v} swap(u, v) {x = v ∧ y = u}
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holds in the sense of partial and total correctness, where x and y are fresh
variables.

In the following D denotes the set of the above two procedure declarations
and SQ the body of the procedure Quicksort(m,n).

Formal Problem Specification

Correctness of Quicksort amounts to proving that upon termination of the
procedure call Quicksort(m,n) the array section a[m : n] is sorted and is a
permutation of the input section. To write the desired correctness formula
we introduce some notation. First, recall from Section 4.5 the assertion

sorted(a[first : last]) ≡ ∀x, y : (first ≤ x ≤ y ≤ last → a[x] ≤ a[y])

stating that the integer array section a[first : last] is sorted. To express the
permutation property we use an auxiliary array a0 in the section a0[x : y]
of which we record the initial values of a[x : y]. Recall from Section 3.9 the
abbreviations

bij(β, x, y) ≡ β is a bijection on N ∧ ∀ i 6∈ [x : y] : β(i) = i

stating that β is a bijection on N which is the identity outside the interval
[x : y] and

perm(a, a0, [x : y]) ≡ ∃β : (bij(β, x, y) ∧ ∀i : a[i] = a0[β(i)])

specifying that the array section a[x : y] is a permutation of the array section
a0[x : y] and that a and a0 are the same elsewhere.

We can now express the correctness of Quicksort by means of the following
correctness formula:

Q1 {a = a0} Quicksort(x, y) {perm(a, a0, [x : y]) ∧ sorted(a[x : y])}.

To prove correctness of Quicksort in the sense of partial correctness we pro-
ceed in stages and follow the modular approach explained in Section 5.3.
In other words, we establish some auxiliary correctness formulas first, using
among others the recursion III rule. Then we use them as premises in order
to derive other correctness formulas, also using the recursion III rule.

Properties of Partition

In the proofs we shall use a number of properties of the Partition procedure.
This procedure is non-recursive, so to verify them it suffices to prove the
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corresponding properties of the procedure body using the proof systems PW
and TW.

More precisely, we assume the following properties of Partition in the
sense of partial correctness:

P1 {true} Partition(m,n) {ri ≤ n ∧ m ≤ le},

P2 {x′ ≤ m ∧ n ≤ y′ ∧ perm(a, a0, [x
′ : y′])}

Partition(m,n)

{x′ ≤ m ∧ n ≤ y′ ∧ perm(a, a0, [x
′ : y′])},

P3 {true}

Partition(m,n)

{ le > ri ∧

(∀ i ∈ [m : ri] : a[i] ≤ pi) ∧

(∀ i ∈ [ri + 1 : le − 1] : a[i] = pi) ∧

(∀ i ∈ [le : n] : pi ≤ a[i])},

and the following property in the sense of total correctness:

PT4 {m < n} Partition(m,n) {m < le ∧ ri < n}.

Property P1 states the bounds for ri and le. We remark that le ≤ n and
m ≤ ri need not hold upon termination. Property P2 implies that the call
Partition(n, k) permutes the array section a[m : n] and leaves other elements
of a intact, but actually is a stronger statement involving an interval [x′ : y′]
that includes [m : n], so that we can carry out the reasoning about the
recursive calls of Quicksort. Finally, property P3 captures the main effect of
the call Partition(n, k): the elements of the section a[m : n] are rearranged
into three parts, those smaller than pi (namely a[m : ri]), those equal to
pi (namely a[ri + 1 : le − 1]), and those larger than pi (namely a[le : n]).
Property PT4 is needed in the termination proof of the Quicksort procedure:
it implies that the subsections a[m : ri] and a[le : n] are strictly smaller than
the section a[m : n].

The correctness formulas P1–P3 and PT4 for the procedure call
Partition(m,n) immediately follow from the properties P1–P4 and T of
the while program PART studied in Section 3.9 (see Exercise 5.8).

Auxiliary Proof: Permutation Property

In the remainder of this section we use the following abbreviation:
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J ≡ m = x ∧ n = y.

We first extend the permutation property P2 to the procedure Quicksort:

Q2 {perm(a, a0, [x
′ : y′]) ∧ x′ ≤ x ∧ y ≤ y′}

Quicksort(x, y)

{perm(a, a0, [x
′ : y′])}

Until further notice the provability symbol ⊢ refers to the proof system PW
augmented with the the block rule, the instantiation rule and the auxiliary
rules A3–A7.

The appropriate claim needed for the application of the recursion III rule
is:

Claim 1.

P1,P2,Q2 ⊢ {perm(a, a0, [x
′ : y′]) ∧ x′ ≤ x < y ≤ y′}

begin local m,n := x, y; SQ end
{perm(a, a0, [x

′ : y′])}.

Proof. In Figure 5.3 a proof outline is given that uses as assumptions the
correctness formulas P1, P2, and Q2. More specifically, the used correctness
formula about the call of Partition is derived from P1 and P2 by the con-
junction rule. In turn, the correctness formulas about the recursive calls of
Quicksort are derived from Q2 by an application of the instantiation rule
and the invariance rule. This concludes the proof of Claim 1. ⊓⊔

We can now derive Q2 by the recursion rule. In summary, we have proved

P1, P2 ⊢ Q2.

Auxiliary Proof: Sorting Property

We can now verify that the call Quicksort(x, y) sorts the array section
a[x : y], so

Q3 {true} Quicksort(x, y) {sorted(a[x : y])}.

The appropriate claim needed for the application of the recursion III rule is:
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{perm(a, a0, [x
′ : y′]) ∧ x′ ≤ x ∧ y ≤ y′}

begin local
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ x ∧ y ≤ y′}
m,n := x, y;
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ x ∧ y ≤ y′ ∧ J}
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ m ∧ n ≤ y′}
if m < n then

{perm(a, a0, [x
′ : y′]) ∧ x′ ≤ m ∧ n ≤ y′}

Partition(m,n);
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ m ∧ n ≤ y′ ∧ ri ≤ n ∧ m ≤ le}
begin local
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ m ∧ n ≤ y′ ∧ ri ≤ n ∧ m ≤ le}
v, w := ri, le;
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ m ∧ n ≤ y′ ∧ v ≤ n ∧ m ≤ w}
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ m ∧ v ≤ y′ ∧ x′ ≤ w ∧ n ≤ y′}
Quicksort(m, v);
{perm(a, a0, [x

′ : y′]) ∧ x′ ≤ w ∧ n ≤ y′}
Quicksort(w, n)
{perm(a, a0, [x

′ : y′])}
end
{perm(a, a0, [x

′ : y′])}
fi
{perm(a, a0, [x

′ : y′])}
end
{perm(a, a0, [x

′ : y′])}

Fig. 5.3 Proof outline showing permutation property Q2.

Claim 2.

P3, Q2, Q3 ⊢ {true}
begin local m,n := x, y; SQ end
{sorted(a[x : y])}.

Proof. In Figure 5.4 a proof outline is given that uses as assumptions the
correctness formulas P3, Q2, and Q3. In the following we justify the cor-
rectness formulas about Partition and the recursive calls of Quicksort used
in this proof outline. In the postcondition of Partition we use the following
abbreviation:

K ≡ v < w ∧
(∀ i ∈ [m : v] : a[i] ≤ pi) ∧
(∀ i ∈ [v + 1 : w − 1] : a[i] = pi) ∧
(∀ i ∈ [w : n] : pi ≤ a[i]).
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{true}
begin local
{true}
m,n := x, y;
{J}
if m < n then

{J ∧ m < n}
Partition(m,n);
{J ∧ K[v, w := ri, le]}
begin local
{J ∧ K[v, w := ri, le]}
v, w := ri, le;
{J ∧ K}
Quicksort(m, v);
{sorted(a[m : v]) ∧ J ∧ K}
Quicksort(w, n)
{sorted(a[m : v] ∧ sorted(a[w : n] ∧ J ∧ K}
{sorted(a[x : v] ∧ sorted(a[w : y] ∧ K[m,n := x, y]}
{sorted(a[x : y])}
end
{sorted(a[x : y])}

fi
{sorted(a[x : y])}
end
{sorted(a[x : y])}

Fig. 5.4 Proof outline showing sorting property Q3.

Observe that the correctness formula

{J} Partition(m,n) {J ∧ K[v, w := ri, le]}

is derived from P3 by the invariance rule. Next we verify the correctness
formulas

{J ∧ K} Quicksort(m, v) {sorted(a[m : v]) ∧ J ∧ K}, (5.10)

and
{sorted(a[m : v]) ∧ J ∧ K}
Quicksort(w, n)
{sorted(a[m : v] ∧ sorted(a[w : n] ∧ J ∧ K}.

(5.11)

about the recursive calls of Quicksort.

Proof of (5.10). By applying the instantiation rule to Q3, we obtain
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A1 {true} Quicksort(m, v) {sorted(a[m : v])}.

Moreover, by the invariance axiom, we have

A2 {J} Quicksort(m, v) {J}.

By applying the instantiation rule to Q2, we then obtain

{perm(a, a0, [x
′ : y′]) ∧ x′ ≤ m ∧ v ≤ y′}

Quicksort(m, v)

{perm(a, a0, [x
′ : y′])}.

Applying next the substitution rule with the substitution [x′, y′ := m, v]
yields

{perm(a, a0, [m : v]) ∧ m ≤ m ∧ v ≤ v}

Quicksort(m, v)

{perm(a, a0, [m : v])}.

So by a trivial application of the consequence rule, we obtain

{a = a0} Quicksort(m, v) {perm(a, a0, [m : v])}.

We then obtain by an application of the invariance rule

{a = a0 ∧ K[a := a0]} Quicksort(m, v) {perm(a, a0, [m : v]) ∧ K[a := a0]}.

Note now the following implications:

K →∃a0 : (a = a0 ∧ K[a := a0]),

perm(a, a0, [m : v]) ∧ K[a := a0] → K.

So we conclude

A3 {K} Quicksort(m, v) {K}

by the ∃-introduction rule and the consequence rule. Combining the correct-
ness formulas A1–A3 by the conjunction rule we get (5.10).

Proof of (5.11). In a similar way as above, we can prove the correctness
formula

{a = a0} Quicksort(w, n) {perm(a, a0, [w : n])}.

By an application of the invariance rule we obtain

{a = a0 ∧ sorted(a0[m : v]) ∧ v < w}
Quicksort(w, n)
{perm(a, a0, [w : n]) ∧ sorted(a0[m : v]) ∧ v < w}.

Note now the following implications:
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v < w ∧ sorted(a[m : v]) →∃a0 : (a = a0 ∧ sorted(a0[m : v]) ∧ v < w),

(perm(a, a0, [w : n]) ∧ sorted(a0[m : v]) ∧ v < w) → sorted(a[m : v]).

So we conclude

B0 {v < w ∧ sorted(a[m : v])} Quicksort(w, n) {sorted(a[m : v])}

by the ∃-introduction rule and the consequence rule. Further, by applying
the instantiation rule to Q3 we obtain

B1 {true} Quicksort(w, n) {sorted(a[w : n])}.

Next, by the invariance axiom we obtain

B2 {J} Quicksort(w,m) {J}.

Further, using the implications

K →∃a0 : (a = a0 ∧ K[a := a0]),

perm(a, a0, [w : n]) ∧ K[a := a0] → K,

we can derive from Q2, in a similar manner as in the proof of A3,

B3 {K} Quicksort(w, n) {K}.

Note that B1–B3 correspond to the properties A1–A3 of the procedure call
Quicksort(m, v). Combining the correctness formulas B0–B3 by the con-
junction rule and observing that K → v < w holds, we get (5.11).

The final application of the consequence rule in the proof outline given in
Figure 5.4 is justified by the following crucial implication:

sorted(a[x : v]) ∧ sorted(a[w : y]) ∧ K[m,n := x, y] →

sorted(a[x : y]).

Also note that J ∧ m ≥ n → sorted(a[x : y]), so the implicit else branch is
properly taken care of. This concludes the proof of Claim 2. ⊓⊔

We can now derive Q3 by the recursion rule. In summary, we have proved

P3, Q2 ⊢ Q3.

The proof of partial correctness of Quicksort is now immediate: it suffices
to combine Q2 and Q3 by the conjunction rule. Then after applying the
substitution rule with the substitution [x′, y′ := x, y] and the consequence
rule we obtain Q1, or more precisely

P1, P2, P3 ⊢ Q1.
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Total Correctness

To prove termination, by the decomposition rule discussed in Section 3.3 it
suffices to establish

Q4 {true} Quicksort(x, y) {true}

in the sense of total correctness. In the proof we rely on the property PT4
of Partition:

{m < n} Partition(m,n) {m < le ∧ ri < n}.

The provability symbol ⊢ refers below to the proof system TW augmented
with the block rule, the instantiation rule and the auxiliary rules A3–A7. For
the termination proof of the recursive procedure call Quicksort(x, y) we use

t ≡ max(y − x, 0)

as the bound function. Since t ≥ 0 holds, the appropriate claim needed for
the application of the recursion IV rule is:

Claim 3.

PT4, {t < z} Quicksort(x, y) {true} ⊢
{t = z} begin local m,n := x, y; SQ end {true}.

Proof. In Figure 5.5 a proof outline for total correctness is
given that uses as assumptions the correctness formulas PT4 and
{t < z} Quicksort(x, y) {true}. In the following we justify the correctness
formulas about Partition and the recursive calls of Quicksort used in this
proof outline. Since m,n, z 6∈ change(D), we deduce from PT4 using the
invariance rule the correctness formula

{n − m = z ∧ m < n}
Partition(m,n)
{n − m = z ∧ m < n ∧ ri − m < n − m ∧ n − le < n − m}.

(5.12)

Consider now the assumption

{t < z} Quicksort(x, y) {true}.

Since n,w, z 6∈ change(D), the instantiation rule and the invariance rule yield

{max(v − m, 0) < z ∧ max(n − w, 0) < z}
Quicksort(m, v)
{max(n − w, 0) < z}

and
{max(n − w, 0) < z} Quicksort(w, n) {true}.
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{t = z}
begin local
{max(y − x, 0) = z}
m,n := x, y;
{max(n − m, 0) = z}
if n < k then

{max(n − m, 0) = z ∧ m < n}
{n − m = z ∧ m < n}
Partition(m,n);
{n − m = z ∧ m < n ∧ ri − m < n − m ∧ n − le < n − m}
begin local
{n − m = z ∧ m < n ∧ ri − m < n − m ∧ n − le < n − m}
v, w := ri, le;
{n − m = z ∧ m < n ∧ v − m < n − m ∧ n − w < n − m}
{max(v − m, 0) < z ∧ max(n − w, 0) < z}
Quicksort(m, v);
{max(n − w, 0) < z}
Quicksort(w, n)
{true}
end
{true}

fi
{true}
end
{true}

Fig. 5.5 Proof outline establishing termination of the Quicksort procedure.

The application of the consequence rule preceding the first recursive call of
Quicksort is justified by the following two implications:

(n − m = z ∧ m < n ∧ v − m < n − m) → max(v − m, 0) < z,

(n − m = z ∧ m < n ∧ n − w < n − m) → max(n − w, 0) < z.

This completes the proof of Claim 3. ⊓⊔

Applying now the simplified version of the recursion IV rule we derive Q4.
In summary, we have proved

PT4 ⊢ Q4.
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5.5 Exercises

5.1. Call a recursive program proper when its sets of local and global
variables are disjoint, and safe when for all procedures no formal pa-
rameter appears in an actual parameter and for all its block statements
begin local x̄ := t̄; S end we have var(x̄) ∩ var(t̄) = ∅.

Suppose that
< S, σ > →∗ < R, τ >,

where σ is a proper state. Prove the following two properties of recursive
programs.

(i) If S is proper, then so is R.
(ii) If S is safe, then so is R.

5.2. Prove the Input/Output Lemma 5.1.

5.3. Prove the Block Lemma 5.4.

5.4. Prove the Change and Access Lemma 5.5.

5.5. Prove the Soundness Theorem 5.4.

5.6. This exercise considers the modularity rule 12 ′ introduced in Section 5.3.

(i) Prove that this rule is a derived rule, in the sense that every proof of
partial correctness that uses it can be converted into a proof that uses
the recursion III rule instead. Conclude that this proof rule is sound in
the sense of partial correctness.

(ii) Suggest an analogous modularity proof rule for total correctness.

5.7. Prove the Soundness Theorem 5.5 for the proof system TRP.

5.8. Consider the Partition procedure defined in Section 5.5. Prove the cor-
rectness formulas P1–P3 and PT4 for the procedure call Partition(m,n)
using the properties P1–P4 and T of the while program PART from Sec-
tion 3.9 and the Transfer Lemma 5.2.

5.9. Allow the failure statements in the main statements and procedure bod-
ies. Add to the proof systems PRP and TRP the corresponding failure rules
from Section 3.7 and prove the counterparts of the Soundness Corollary 5.1
and Soundness Theorem 5.5.

5.6 Bibliographic Remarks

The usual treatment of parameter mechanisms involves appropriate renaming
of local variables to avoid variable clashes, see, e.g., Apt [1981]. The semantics
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and proof theory of the call-by-value parameter mechanism adopted here
avoids any renaming and seems to be new. Recursion IV rule is a modification
of the corresponding rule from America and de Boer [1990].

For other parameter mechanisms like call-by-name (as in ALGOL) or call-
by-reference (as in Pascal) a renaming of local variables in procedure bodies
is unavoidable to maintain the static scope of variables. In Olderog [1981] a
proof system for programs with procedures having call-by-name parameters
is presented, where local variables are renamed whenever the block of a pro-
cedure body is entered. This mimicks the copy rule of ALGOL 60, see, e.g.,
Grau, Hill, and Langmaack [1967].

Clarke investigated programs with a powerful ALGOL-like procedure
mechanism where recursive procedures can take procedures as parameters;
in Clarke [1979] he showed that for such programs it is impossible to obtain
a complete Hoare-style proof system even if —different from this book— only
logical structures with finite data domains are considered. Clarke’s article ini-
tiated an intense research on the question of whether complete Hoare-style
proof systems could be obtained for programs with a restricted ALGOL-like
procedure mechanism. For program classes with complete proof systems see,
for example, Olderog [1981,1983a,1984] and Damm and Josko [1983]. An in-
teresting survey over these results on completeness of Hoare’s logic can be
found in Clarke [1985].

The algorithm Quicksort is due to Hoare[1961a,1962]. The first proof of
partial correctness of Quicksort is given in Foley and Hoare [1971]. That
proof establishes the permutation and the sorting property simultaneously,
in contrast to our modular approach. For dealing with recursive procedures,
Foley and Hoare [1971] use proof rules corresponding to our rules for blocks,
instantiation, and recursion III rule for the case of one recursive procedure.
They also use a so-called adaptation rule of Hoare [1971a] that allows one
to adapt a given correctness formula about a program to other pre- and
postconditions. In our approach we use several auxiliary rules which together
have the same effect as the adaptation rule. The expressive power of the
adaptation rule has been analyzed in Olderog [1983b]. No proof rule for the
termination of recursive procedures is proposed in Foley and Hoare [1971],
only an informal argument is given why Quicksort terminates. In Kaldewaij
[1990] a correctness proof of a non-recursive version of Quicksort is given.





6 Object-Oriented Programs

6.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.5 Adding Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.6 Transformation of Object-Oriented Programs . . . . . . . . . . 211

6.7 Object Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.8 Case Study: Zero Search in Linked List . . . . . . . . . . . . . . . 226

6.9 Case Study: Insertion into a Linked List . . . . . . . . . . . . . . 232

6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.11 Bibliographic Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

I N THIS CHAPTER we study the verification of object-oriented pro-

grams. We focus on the following main characteristics of objects:

• objects possess (and encapsulate) their own local variables,

• objects interact via method calls,

• objects can be dynamically created.

In contrast to the formal parameters of procedures and the local variables of

block statements which only exist temporarily, the local variables of an ob-

ject exist permanently. To emphasize the difference between these temporary

variables and the local variables of an object, the latter are called instance

variables. The local state of an object is a mapping that assigns values to

its instance variables. Each object represents its local state by a pointer to

185
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it. Encapsulation means that the instance variables of an object cannot be

directly accessed by other objects; they can be accessed only via method calls

of the object.

A method call invokes a procedure which is executed by the called object.

The execution of a method call thus involves a temporary transfer of control

from the local state of the caller object to that of the called object (also

referred to by callee). Upon termination of the method call the control returns

to the local state of the caller. The method calls are the only way to transfer

control from one object to another.

We start in Section 6.1 by defining the syntax of the object-oriented pro-

gramming language. We first restrict the language to simple method calls

which do not involve parameters. In Section 6.2 we introduce the corre-

sponding operational semantics. This requires an appropriate extension of

the concept of a state to properly deal with objects and instance variables.

In Section 6.3 we introduce the syntax and semantics of the assertion

language. Expressions of the programming language only refer to the local

state of the executing object. We call them local expressions. In order to

express global properties we introduce in the assertion language a new kind

of expression which allow us to navigate through the local object states. We

call them global expressions.

Next, in Section 6.4, we introduce a new assignment axiom for the instance

variables. The rules for partial and total correctness of recursive procedure

calls with parameters (as described in Chapter 5) are naturally extended to

method calls. In Section 6.5 we discuss the extension to method calls with

parameters. In Section 6.6 we introduce a transformation of object-oriented

programs into recursive programs and use it to prove soundness of the proof

systems introduced for reasoning about object-oriented programs.

Next, in Section 6.7 we introduce a new assignment axiom for object cre-

ation. Finally, in Section 6.8 we prove as a case study the correctness of an

object-oriented program that implements a search for zero in a linked list

of integers, and in Section 6.9 the correctness of an object-oriented program

that inserts a new object in a linked list.
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6.1 Syntax

We first describe the syntax of the expressions of the considered programming
language and then define the syntax of method calls, method definitions and
object-oriented programs.

Local Expressions

The set of expressions used here extends the set of expressions introduced in
Section 2.2. We call them local expressions to stress that they refer to local
properties of objects. We begin by introducing a new basic type object which
denotes the set of objects. A local expression (e.g, a variable) of type object
denotes an object. Simple variables of type object and array variables with
value type object are called object variables. As a specific case, we distinguish
the simple object variable this which at each state denotes the currently
executing object.

Recall from Section 2.2 that we denote the set of all simple and array
variables by Var. We now introduce a new set IV ar of instance variables
(so V ar ∩ IV ar = ∅). An instance variable is a simple variable or an array
variable. Thus we now have two kinds of variables: the up till now considered
normal variables (V ar), which are shared, and instance variables (IV ar),
which are owned by objects. Each object has its own local state which assigns
values to the instance variables. We stipulate that this is a normal variable,
that is, this ∈ V ar.

The only operation of a higher type which involves the basic type object
(as argument type or as value type) is the equality =object (abbreviated by
=). Further, as before we abbreviate ¬(s = t) by s 6= t. Finally, the constant
null of type object represents the void reference, a special construct which
does not have a local state.

Example 6.1. Given an array variable a ∈ V ar ∪ IV ar of type
integer → object,

• a[0] is a local expression of type object,
• this = a[0] and this 6= null are local Boolean expressions.

⊓⊔

Summarizing, the set of expressions defined in Section 2.2 is extended by
the introduction of the basic type object, the constant null of type object,
and the set IV ar of (simple and array) instance variables. Local object ex-
pressions, i.e., expressions of type object, can only be compared for equality.
A variable is either a normal variable (in V ar) or an instance variable (in
IV ar). Simple variables (in V ar∪IV ar) can now be of type object. Also the
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argument and the value types of array variables (in V ar ∪ IV ar) can be of
type object. Finally, we have the distinguished normal object variable this.

Statements and Programs

We extend the definition of statements given in Section 3.1 with block state-
ments, as introduced in Section 5.1, and method calls which are described by
the following clause:

S ::= s.m.

The local object expression s in the method call s.m denotes the called object.
The identifier m denotes a method which is a special kind of procedure.

The methods are defined as parameterless procedures, by means of a def-
inition

m :: S.

Here S is the method body . Because the statements now include method calls,
we allow for recursive (albeit parameterless) methods. The instance variables
appearing in the body S of a method definition are owned by the execut-
ing object which is denoted by the variable this. To ensure correct use of
the variable this, we only consider statements in which this is read-only,
that is, we disallow assignments to the variable this. Further, to ensure that
instance variables are permanent, we require that in each block statement
begin local ū := t̄;S end we have var(ū) ⊆ V ar \ {this}, that is, instance
variables are not used as local variables. However, when describing the se-
mantics of method calls, we do use ‘auxiliary’ block statements in which the
variable this is used as a local variable (see the discussion in Example 6.2),
so in particular, it is initialized (and hence modified).

Apart from denoting the callee of a method call, local object expressions,
as already indicated in Example 6.1, can appear in local Boolean expres-
sions. Further, we allow for assignments to object variables. In particular,
the assignment u := null is used to assign to the object variable u the void
reference, which is useful in programs concerned with dynamic data struc-
tures (such as lists), see Example 6.5. In turn, the assignment u := v for the
object variables u and v causes u and v to point to the same object. Partic-
ularly useful is the assignment of the form x := this that causes x to point
to the currently executing object. An example will be given below.

We now denote by D a set of method definitions. Object-oriented programs
consist of a main statement S and a given set D of method definitions such
that each method used has a unique declaration in D and each method call
refers to a method declared in D. Finally, we assume that the name clashes
between local variables and global variables are resolved in the same way as
in Chapter 5, so by assuming that no local variable of S occurs in D.

From now on we assume a given set D of method definitions.
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Example 6.2. Suppose that the set D contains the method definition

getx :: return := x,

where return ∈ V ar and x ∈ IV ar. Then the method call

y.getx,

where y ∈ V ar∪ IV ar is an object variable, assigns the value of the instance
variable x of the called object denoted by y to the normal variable return. The
execution of this method call by the current object, denoted by this, transfers
control from the local state of the current object to that of the called object
y. Semantically, this control transfer is described by the (implicit) assignment

this := y,

which sets the current executing object to the one denoted by y. After the
execution of the method body control is transferred back to the calling object
which is denoted by the previous value of this. Summarizing, the execution
of a method call y.getx can be described by the block statement

begin local this := y; return := x end.

Because of the assignment this := y, the instance variable x is owned within
this block statement by the called object y. Note that upon termination the
local variable this is indeed reset to its previous value (which denotes the
calling object).

Consider now the main statement

y.getx; z := return.

Using the method call y.getx it assigns to the instance variable z of the
current object the value of the instance variable x of the object denoted by
y, using the variable return.

The names of the instance variables can coincide. In case x ≡ z, the above
main statement copies the value of the instance variable x owned by y to the
instance variable x of the current object, denoted by this. ⊓⊔

Example 6.3. Given an instance integer variable count we define the meth-
ods inc and reset as follows:

inc :: count := count + 1,
reset :: count := 0.

Assume now normal integer variables i, j and n, normal object variables
up and down and a normal array variable a of type integer → integer. The
main statement
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i := 0;
up.reset;
down.reset;
while i ≤ n
do if a[i] > j

then up.inc
else if a[i] < k then down.inc fi
fi;
i := i + 1

od

computes the number of integers greater than j and the number of integers
smaller than k, stored in a[0 : n], using two normal object variables up and
down. Since count is an instance variable, the call up.inc of the method inc
of up does not affect the value of count of the object down (and vice versa),
assuming up 6= down, i.e., when up and down refer to distinct objects. ⊓⊔

The above example illustrates one of the main features of instance vari-
ables. Even though there is here only one variable count, during the program
execution two instances (hence the terminology of an ‘instance variable’) of
this variable are created and maintained: up.count and down.count. When
the control is within the up object (that is, up is the currently executing ob-
ject), then up.count is used, and when the control is within the down object,
then down.count is used.

The next two examples illustrate the important role played by the instance
object variables. They allow us to construct dynamic data structures, like
lists.

Example 6.4. We represent a (non-circular) linked list using the instance
object variable next that links the objects of the list, and the constant null
that allows us to identify the last element of the list. We assume that each
object stores a value, kept in an instance integer variable val. Additionally,
we use the normal object variable first to denote (point to) the first object
in the list, see for example Figure 6.1.

Fig. 6.1 A list.
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We want to compute the sum of the instance variables val. To this end,
we additionally use the normal integer variable sum, normal object variable
current that (points to) denotes the current object, and two methods, add
and move, defined as follows:

add :: sum := sum + val,
move :: current := next.

The first one updates the variable sum, while the second one allows us to
progress to the next object in the list.

The following main statement then computes the desired sum:

sum := 0;
current := first;
while current 6= null do current.add; current.move od.

⊓⊔

In this example the method call current.move is used to ‘advance’ the
variable current to point to the next element of the list. Note that this effect
of advancing the variable current cannot be achieved by using the assignment
current := next instead. Indeed, the repeated executions of the assignment
current := next can modify the variable current only once.

The next example presents a program that uses a recursive method.

Example 6.5. Consider again a non-circular linked list built using an in-
stance object variable next and the constant null, representing the last ele-
ment, such as the one depicted in Figure 6.1. Then, given an integer instance
variable val and a normal object variable return, the following recursive
method

find :: if val = 0
then return := this
else if next 6= null

then next.find
else return := null
fi

fi

returns upon termination of the call this.find an object that stores zero.
More precisely, if such an object exists, then upon termination the variable
return points to the first object in the list that stores zero and otherwise the
void reference (represented by the constant null) is returned. ⊓⊔

This program is a typical example of recursion over dynamic data struc-
tures represented by objects. The recursive call of the method find of the
object denoted by the instance variable next involves a transfer of the con-
trol from the local state of the calling object this to the local state of the
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next object in the list. Since the variable next is an instance variable, which
version of it is being referred to and which value it has depends on which
object is currently executing.

More specifically, in the example list depicted in Figure 6.1 the call of the
method find on the first object, i.e., one that stores the value 7, searches for
the first object whose val variable equals zero. If such an object is found, it is
returned using the object variable this. Note that the outer else branch leads
to the call next.find of the find method of the object to which the variable
next of the current object refers. So in the case of the list depicted in Figure
6.1 if the current object is the one that stores the value 7, then the method call
next.find is the call of the find method of the object that stores the value 0.
This call is conditional: if next equals null, then the search terminates and
the void reference is returned, through the variable return. We shall return
to this program in Section 6.8, where we shall prove its correctness.

Given a set D of method definitions, the set change(S), originally defined
in Chapter 4 for the case of normal variables, now also includes the instance
variables that can be modified by S. For example, for the main statement S
in Example 6.3, we have count ∈ change(S), given the declarations of the
methods inc and reset. Note that count is owned by different objects and
that the main statement changes the instance variable count of the object
variables up and down.

6.2 Semantics

In this section we define the semantics of the introduced object-oriented pro-
grams. We first define the semantics of local expressions. This semantics
requires an extension of the definition of state. Subsequently we introduce a
revised definition of an update of a state and provide the transition axioms
concerned with the newly introduced programming constructs.

Semantics of Local Expressions

The main difficulty in defining the semantics of local expressions is of course
how to deal properly with the instance variables. As already mentioned above,
each instance variable has a different version (‘instance’) in each object. Con-
ceptually, when defining the semantics of an instance variable u we view it as
a variable of the form this.u, where this represents the current object. So,
given a proper state σ and a simple instance variable x we first determine the
current object o, which is σ(this). Then we determine the local state of this
object, which is σ(o), or σ(σ(this)), and subsequently apply this local state
to the considered instance variable x. This means that given a proper state
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σ the value assigned to the instance variable x is σ(o)(x), or, written out in
full, σ(σ(this))(x). This two-step procedure is at the heart of the definition
given below.

Let an infinite set Dobject of object identities be given. We introduce a
value null ∈ Dobject. So in each proper state a variable of type object equals
some object of Dobject, which can be the null object. A proper state σ now
additionally assigns to each object o ∈ Dobject its local state σ(o). In turn,
a local state σ(o) of an object o assigns a value of appropriate type to each
instance variable.

So the value of an instance variable x ∈ IV ar of an object o ∈ Dobject is
given by σ(o)(x) and, as before, the value of x ∈ V ar is given by σ(x).

Note that the local state of the current object σ(this) is given by
σ(σ(this)). Further, note that in particular, if an instance variable x is of
type Object, then for each object o ∈ Dobject, σ(o)(x) is either null or an
object o′ ∈ Dobject, whose local state is σ(o′), i.e., σ(σ(o)(x)). This applica-
tion of σ can of course be nested, to get local states of the form σ(σ(σ(o)(x))),
etc. Note that a state σ also assigns a local state σ(null) to the null object.
However, as we will see below this local state will never be accessed by an
object-oriented program.

Formally, we extend the semantics of expressions S[[s]](σ), given in Sec-
tion 2.3, by the following clauses:

• if s ≡ null then

S[[s]](σ) = null.

So the meaning of the void reference (i.e., the constant null) is the null
object,

• if s ≡ x for some simple instance variable x then

S[[s]](σ) = σ(o)(x),

where o = σ(this),
• if s ≡ a[s1, . . . , sn] for some instance array variable a then

S[[s]](σ) = σ(o)(a)(S[[s1]](σ), . . . ,S[[sn]](σ)),

where o = σ(this).

We abbreviate S[[s]](σ) by σ(s). So for a simple instance variable

σ(x) = σ(σ(this))(x). (6.1)
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Updates of States

Next, we proceed with the revision of the definition of a state update for the
case of instance variables. Here, the intuition we provided when explaining
the semantics of instance variables, is of help. Consider a proper state σ,
a simple instance variable x and a value d belonging to the type of x. To
perform the corresponding update of σ on x we first identify the current
object o, which is σ(this) and its local state, which is σ(o), or σ(σ(this)),
that we denote by τ . Then we perform the appropriate update on the state
τ . So the desired update of σ is achieved by modifying τ to τ [x := d].

In general, let u be a (possibly subscripted) instance variable of type T
and τ a local state. We define for d ∈ DT

τ [u := d]

analogously to the definition of state update given in Section 2.3.
Furthermore, we define for an object o ∈ Dobject and local state τ , the

state update σ[o := τ ] by

σ[o := τ ](o′) =

{
τ if o = o′

σ(o′) otherwise.

We are now in a position to define the state update σ[u := d] for a (possibly
subscripted) instance variable u of type T and d ∈ DT , as follows:

σ[u := d] = σ[o := τ [u := d]],

where o = σ(this) and τ = σ(o). Note that the state update σ[o := τ [u := d]]
assigns to the current object o the update τ [u := d] of its local state τ . In
its fully expanded form we get the following difficult to parse definition of a
state update:

σ[u := d] = σ[σ(this) := σ(σ(this))[u := d]].

Example 6.6. Let x be an integer instance variable, o = σ(this), and τ =
σ(o). Then

σ[x := 1](x)

= {(6.1) with σ replaced by σ[x := 1]}

σ[x := 1](σ[x := 1](this))(x)

= {by the definition of state update, σ[x := 1](this) = σ(this) = o}

σ[x := 1](o)(x)



6.2 Semantics 195

= {definition of state update σ[x := 1]}

σ[o := τ [x := 1]](o)(x)

= {definition of state update σ[o := τ [x := 1]]}

τ [x := 1](x)

= {definition of state update τ [x := 1]}

1.

⊓⊔

Semantics of Statements and Programs

To define the semantics of considered programs we introduce three transi-
tion axioms that deal with the assignment to (possibly subscripted) instance
variables and with the method calls. The first axiom uses the state update
defined above.

(xi) < u := t, σ >→< E, σ[u := σ(t)] >,

(xii) < s.m, σ >→< begin local this := s; S end, σ >
where σ(s) 6= null and m :: S ∈ D,

(xiii) < s.m, σ >→< E, fail > where σ(s) = null.

So thanks to the extended definition of a state update, the first transition
axiom models the meaning of an assignment to an instance variable in exactly
the same way as the meaning of the assignment to a normal variable.

The second transition axiom shows that we reduce the semantics of method
calls to procedure calls with parameters by treating the variable this as a
formal parameter and the called object as the corresponding actual parame-
ter. The third transition axiom shows the difference between the method calls
and procedure calls: if in the considered state σ the called object s equals the
void reference (it equals null), then the method call yields a failure.

We could equally well dispense with the use of the block statement in the
transition axiom (xii) by applying to the right configuration the transition
axiom (ix) for the block statement. The resulting transition axiom would
then take the form

< s.m, σ >→< this := s;S; this := σ(this), σ >,

where σ(s) 6= null and m(ū) :: S ∈ D. Then the variable this would remain
a global variable throughout the computation.

We did not do this for a number of reasons:
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• the proposed axiom captures explicitly the ‘transitory’ change of the value
of the variable this,

• in the new recursion rule that deals with the method calls we do need the
block statement anyway,

• later we shall need the block statement anyway, to define the meaning of
the calls of methods with parameters.

Example 6.7. Given the method getx defined in Example 6.2 and an object
variable y, we obtain the following computation:

< y.getx, σ >

→ < begin local this := y; return := x end, σ >

→ < this := y; return := x; this := σ(this), σ >

→ < return := x; this := σ(this), σ[this := σ(y)] >

→ {see simplification 1 below}

< this := σ(this), σ[this := σ(y)][return := σ(σ(y))(x)] >

→ {see simplication 2 below}

< E, σ[return := σ(σ(y))(x)] > .

In the last two transitions we performed the following simplifications in con-
figurations on the right-hand side.

Re: 1.

σ[this := σ(y)](x)

= {(6.1) with σ replaced by σ[this := σ(y)]}

σ[this := σ(y)](σ[this := σ(y)](this))(x)

= {by the definition state update, σ[this := σ(y)](this) = σ(y)}

σ[this := σ(y)](σ(y))(x)

= {by the definition state update, σ[this := σ(y)](σ(y)) = σ(σ(y))}

σ(σ(y))(x)

Re: 2.

σ[this := σ(y)][return := σ(σ(y))(x)][this := σ(this)]

= {since return 6≡ this}

σ[return := σ(σ(y))(x)][this := σ(y)][this := σ(this)]

= {the last update overrides the second update

by the value this has in σ}

σ[return := σ(σ(y))(x)]

This completes the calculation of the computation. ⊓⊔
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Lemma 6.1. (Absence of Blocking) For every S that can arise during an
execution of an object-oriented program, if S 6≡ E then for any proper state
σ, such that σ(this) 6= null, there exists a configuration < S1, τ > such that

< S, σ > → < S1, τ >,

where τ(this) 6= null.

Proof. If S 6≡ E then any configuration < S, σ > has a successor in the
transition relation → . To prove the preservation of the assumed property
of the state it suffices to consider the execution of the this := s assignment.
Each such assignment arises only within the context of the block statement in
the transition axiom (xii) and is activated in a state σ such that σ(s) 6= null.
This yields a state τ such that τ(this) 6= null. ⊓⊔

When considering verification of object-oriented programs we shall only
consider computations that start in a proper state σ such that σ(this) 6= null,
i.e., in a state in which the current object differs from the void reference. The
Absence of Blocking Lemma 6.1 implies that such computations never lead
to a proper state in which this inequality is violated.

The partial correctness semantics is defined exactly as in the case of the
recursive programs with parameters considered in Chapter 5. (Recall that we
assumed a given set D of method declarations.)

The total correctness semantics additionally records failures. So, as in the
case of the failure admitting programs from Section 3.7, we have for a proper
state σ

Mtot [[S]](σ) = M[[S]](σ)
∪ {⊥ | S can diverge from σ}
∪ {fail | S can fail from σ}.

Example 6.8. Let us return to Example 6.2. On the account of Example 6.7
the following holds for the object variable y:

• if σ(y) 6= null then

M[[y.getx]](σ) = Mtot [[y.getx]](σ) = {σ[return := σ(σ(y))(x)]},

• if σ(y) = null then

M[[y.getx]](σ) = ∅ and Mtot [[y.getx]](σ) = {fail}.
⊓⊔

6.3 Assertions

Local expressions of the programming language only refer to the local state
of the executing object and do not allow us to distinguish between differ-
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ent versions of the instance variables. In the assertions we need to be more
explicit. So we introduce the set of global expressions which extends the set
of local expressions introduced in Subsection 6.1 by the following additional
clauses:

• if s is a global expression of type object and x is an instance variable of
a basic type T then s.x is a global expression of type T ,

• if s is a global expression of type object, s1, . . . , sn are global expressions
of type T1, . . . , Tn, and a is an array instance variable of type T1×. . .×T1 →
T then s.a[s1, . . . , sn] is a global expression of type T .

In particular, every local expression is also a global expression.

Example 6.9. Consider a normal integer variable i, a normal variable x of
type object, a normal array variable of type integer → object, and an
instance variable next of type object.

Using them and the normal this variable (that is of type object) we can
generate the following global expressions:

• next, next.next, etc.,
• this.next, this.next.next, etc.,
• x.next, x.next.next, etc.,
• a[i].next,

all of type object. In contrast, next.this and next.x are not global expres-
sions, since neither this nor x are instance variables. ⊓⊔

We call a global expression of the form s.u a navigation expression since
it allows one to navigate through the local states of the objects. For example,
the global expression next.next refers to the object that can be reached by
‘moving’ to the object denoted by the value of next of the current object this
and evaluate the value of its variable next.

We define the semantics of global expressions as follows:

• for a simple instance variable x of type T ,

S[[s.x]](σ) = σ(o)(x),

where S[[s]](σ) = o,
• for an instance array variable a with value type T

S[[s.a[s1, . . . , sn]]](σ) = σ(o)(a)(S[[s1]](σ), . . .,S[[sn]](σ)),

where S[[s]](σ) = o.

We abbreviate S[[t]](σ) by σ(t).
So for a (simple or subscripted) instance variable u the semantics of u and

this.u coincide, that is, for all proper states σ we have σ(u) = σ(this.u). In
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other words, we can view an instance variable u as an abbreviation for the
global expression this.u.

Note that this semantics also provides meaning to global expressions of
the form null.u. However, such expressions are meaningless when specifying
correctness of programs because the local state of the null object can never be
reached in computations starting in a proper state σ such that σ(this) 6= null
(see the Absence of Blocking Lemma 6.1).

Example 6.10. If x is an object variable and σ a proper state such that
σ(x) 6= null, then for all simple instance variables y

σ(x.y) = σ(σ(x))(y).

⊓⊔

Assertions are constructed from global Boolean expressions as in Sec-
tion 2.5. This means that only normal variables can be quantified.

Substitution

The substitution operation [u := t] was defined in Section 2.7 only for the
normal variables u and for the expressions and assertions as defined there.
We now extend the definition to the case of instance variables u and global
expressions and assertions constructed from them.

Let u be a (simple or subscripted) instance variable and s and t global ex-
pressions. In general, the substitution [u := t] replaces every possible alias e.u
of u by t. In addition to the possible aliases of subscripted variables, we now
also have to consider the possibility that the global expression e[u := t] de-
notes the current object this. This explains the use of conditional expressions
below.

Here are the main cases of the definition substitution operation s[u := t]:

• if s ≡ x ∈ V ar then
s[u := t] ≡ x

• if s ≡ e.u and u is a simple instance variable then

s[u := t] ≡ if e′ = this then t else e′.u fi

where e′ ≡ e[u := t],
• if s ≡ e.a[s1, . . . , sn] and u ≡ a[t1, . . . , tn] then

s[u := t] ≡ if e′ = this ∧
∧n

i=1 s′i = ti then t else e′.a[s′1, . . . , s
′
n] fi

where e′ ≡ e[u := t] and s′i ≡ si[u := t] for i ∈ {1, . . . , n}.
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The following example should clarify this definition.

Example 6.11. Suppose that s ≡ this.u. Then

this.u[u := t]

≡ if this[u := t] = this then t else . . . fi

≡ if this = this then t else . . . fi.

So this.u[u := t] and t are equal, i.e., for all proper states σ we have
σ(this.u[u := t]) = σ(t).

Next, suppose that s ≡ this.a[x], where x is a simple variable. Then

this.a[x][a[x] := t]

≡ if this[a[x] := t] = this ∧ x[a[x] := t] = x then t else . . . fi

≡ if this = this ∧ x = x then t else . . . fi.

So this.a[x][a[x] := t] and t are equal.
Finally, for a simple instance variable u and a normal object variable x we

have

x.u[u := t]

≡ if x[u := t] = this then t else x[u := t].u fi

≡ if x = this then t else x.u fi.

⊓⊔

The substitution operation is then extended to assertions in the same way
as in Section 2.5 and the semantics of assertions is defined as in Section 2.6.
We have the following counterpart of the Substitution Lemma 2.4.

Lemma 6.2. (Substitution of Instance Variables) For all global expres-
sions s and t, all assertions p, all simple or subscripted instance variables u
of the same type as t and all proper states σ,

(i) σ(s[u := t]) = σ[u := σ(t)](s),
(ii) σ |= p[u := t] iff σ[u := σ(t)] |= p.

Proof. See Exercise 6.3. ⊓⊔

6.4 Verification

We now study partial and total correctness of object-oriented programs. To
this end, we provide a new definition of a meaning of an assertion, now defined
by
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[[p]] = {σ | σ is a proper state such that σ(this) 6= null and σ |= p},

and say that an assertion p is is true, or holds, if

[[p]] = {σ | σ is a proper state such that σ(this) 6= null}.

This new definition ensures that when studying program correctness we limit
ourselves to meaningful computations of object-oriented programs.

The correctness notions are then defined in the familiar way using the
semantics M and Mtot. In particular, total correctness is defined by:

|=tot {p} S {q} if Mtot [[S]]([[p]]) ⊆ [[q]].

Since by definition fail, ⊥ 6∈ [[q]] holds, as in the case of the failure admitting
programs from Section 3.7, |=tot {p} S {q} implies that S neither fails nor
diverges when started in a proper state σ satisfying p and such that
σ(this) 6= null.

Partial Correctness

We begin, as usual, with partial correctness. We have the following axiom for
assignments to (possibly subscripted) instance variables.

AXIOM 14: ASSIGNMENT TO INSTANCE VARIABLES

{p[u := t]} u := t {p}

where u is a (possibly subscripted) instance variable.

So this axiom uses the new substitution operation defined in the section
above.

To adjust the correctness formulas that deal with generic method calls to
specific objects we modify the instantiation rule 11 of Section 5.3 as follows.
We refer here to the given set D of method declarations.

RULE 15: INSTANTIATION II

{p} y.m {q}

{p[y := s]} s.m {q[y := s]}

where y 6∈ var(D) and var(s) ∩ change(D) = ∅.

The recursion III rule for partial correctness of recursive procedure calls
with parameters that we introduced in Chapter 5 can be readily modified
to deal with the method calls. To this end, it suffices to treat the variable
this as a formal parameter of every method definition and the callee of a
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method call as the corresponding actual parameter. This yields the following
proof rule that deals with partial correctness of recursive methods. Below
the provability symbol ⊢ refers to the proof system PW augmented with
the assignment axiom 14, the block rule, the instantiation II rule and the
auxiliary axioms and rules A2–A7.

RULE 16: RECURSION V

{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢ {p} S {q},
{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢

{pi} begin local this := si; Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi :: Si ∈ D, for i ∈ {1, . . ., n}.

To prove partial correctness of object-oriented programs we use the fol-
lowing proof system PO :

PROOF SYSTEM PO :
This system consists of the group of axioms
and rules 1–6, 10, 14–16, and A2–A7.

We assume here and in the other proof systems presented in this chapter
that the substitution rule A7 and the ∃-introduction rule A5 refer to the
normal variables, i.e., we cannot substitute or eliminate instance variables.

Thus PO is obtained by extending the proof system PW by the block
rule, the assignment to instance variables axiom, the instantiation II rule,
the recursion V rule, and the auxiliary axioms and rules A2–A7.

When we deal only with one, non-recursive method and use the method
call as the considered program, the recursion V rule can be simplified to

{p} begin local this := s; S end {q}

{p} s.m {q}

where D = m :: S.
We now illustrate the above proof system by two examples in which we

use this simplified version of the recursion V rule.

Example 6.12. Given the method definition

inc :: count := count + 1

where count is an instance integer variable, we prove the following invariance
property

{this 6= other ∧ this.count = z} other.inc {this.count = z},
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where z ∈ V ar. To this end, we first prove

{u 6= other ∧ u.count = z}
begin local this := other; count := count + 1 end
{u.count = z},

(6.2)

where u ∈ V ar is a fresh variable.
By the assignment axiom for normal variables, we have

{if u = other then count + 1 else u.count fi = z}
this := other
{if u = this then count + 1 else u.count fi = z}.

Further, by the assignment axiom for instance variables we have

{(u.count = z)[count := count + 1]} count := count + 1 {u.count = z}.

Since u[count := count + 1] ≡ u, we have

(u.count = z)[count := count + 1]
≡ if u = this then count + 1 else u.count fi = z.

Clearly,

u 6= other ∧ u.count = z → if u = other then count + 1 else u.count fi = z.

So we obtain the above correctness formula (6.2) by an application of the
composition rule, the consequence rule and, finally, the block rule.

We can now apply the recursion V rule. This way we establish

{u 6= other ∧ u.count = z} other.inc {u.count = z}.

Finally, using the substitution rule A7 with the substitution u := this we
obtain the desired correctness formula. ⊓⊔

Example 6.13. Given an arbitrary method m (so in particular for the above
method inc), we now wish to prove the correctness formula

{other = null} other.m {false}

in the sense of partial correctness. To this end, it suffices to prove

{other = null}
begin local this := other; S end
{false}

(6.3)

where m is defined by m :: S, and apply the recursion V rule.
Now, by the assignment axiom for normal variables we have
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{other = null} this := other {this = null}.

But by the new definition of truth of assertions we have [[this = null]] = ∅,
i.e.,

this = null → false

holds. By the consequence rule we therefore obtain

{other = null} this := other {false}.

Further, by the invariance axiom A2 we have

{false} S {false},

so by the composition rule and the block rule we obtain (6.3).
Note that by the substitution rule A7 and the consequence rule this implies

the correctness formula

{true} null.m {false}

in the sense of partial correctness. ⊓⊔

Total Correctness

We next introduce the proof system for total correctness. Below, the provabil-
ity symbol ⊢ refers to the proof system TW augmented with the assignment
axiom 14, the block rule, the instantiation II rule and the auxiliary rules
A3–A7.

In order to prove absence of failures due to calls of a method on null, we
proceed as in the failure II rule of Section 3.7 and add similar conditions to
premises of the recursion rule. For proving absence of divergence we proceed in
an analogous way as in Chapter 5 in the case of procedures with parameters.
This results in the following rule.

RULE 17: RECURSION VI

{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢ {p} S {q},
{p1 ∧ t < z} s1.m1 {q1}, . . . , {pn ∧ t < z} sn.mn {qn} ⊢

{pi ∧ t = z} begin local this := si; Si end {qi}, i ∈ {1, . . ., n},
pi → si 6= null, i ∈ {1, . . ., n}

{p} S {q}
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where mi :: Si ∈ D, for i ∈ {1, . . . , n}, and z is an integer variable that does
not occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs as
a constant.

To prove total correctness of object-oriented programs we use then the
following proof system TO :

PROOF SYSTEM TO :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 15, 17, and A3–A7.

Thus TO is obtained by extending proof system TW by the block rule, the
assignment to instance variables axiom, instantiation II rule, the recursion VI
rule, and the auxiliary rules A3–A6.

Example 6.14. Given the method inc defined as in Example 6.12, so by

inc :: count := count + 1,

we now prove the correctness formula

{this 6= other ∧ other 6= null ∧ this.count = z} other.inc {this.count = z}

in the sense of total correctness. We already proved in Example 6.12

{u 6= other ∧ u.count = z}
begin local this := other; count := count + 1 end
{u.count = z},

and the proof is equally valid in the sense of total correctness. So by the
consequence rule we obtain

{u 6= other ∧ other 6= null ∧ u.count = z}
begin local this := other; count := count + 1 end
{u.count = z}.

Because of the form of the precondition we can use the recursion VI rule
to derive

{u 6= other ∧ other 6= null ∧ u.count = z} other.inc {u.count = z},

from which the desired correctness formula follows by the substitution rule
A7. ⊓⊔
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6.5 Adding Parameters

We now extend the syntax of the object-oriented programs by allowing
parametrized method calls. To this end, we introduce the following rule:

S ::= s.m(t1, . . . , tn),

where, as before, s is the local object expression and m is a method, and
t1, . . . , tn, are the actual parameters of a basic type. A method is now defined
by means of a definition

m(u1, . . . , un) :: S,

where the formal parameters u1, . . . , un ∈ V ar are of a basic type. We assume
that n ≥ 0, so that we generalize the case studied so far.

As before, a program consists of a main statement and a set D of method
definitions, where we stipulate the same restrictions concerning the use of
method calls and of the object variable this as in the case of parameterless
methods.

Further, we assume the same restriction as in Chapter 5 in order to avoid
name clashes between local variables and global variables.

Example 6.15. Consider an instance variable x and the method setx defined
by

setx(u) :: x := u.

Then the main statement
y.setx(t)

sets the value of the instance variable x of the object y to the value of the
local expression t. ⊓⊔

Example 6.16. Consider an instance object variable next and the method
definition

setnext(u) :: next := u.

Then the main statement

x.setnext(next); next := x

inserts in this list the object denoted by the object variable x between the
current object denoted by this and the next one, denoted by next, see Fig-
ures 6.2 and 6.3. ⊓⊔
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Fig. 6.2 A linked list before the object insertion.

Fig. 6.3 A linked list after the object insertion.

Semantics

The semantics of a method call with parameters is described by the following
counterparts of the transitions axioms (xii) and (xiii):

(xiv) < s.m(t̄), σ >→< begin local this, ū := s, t̄; S end, σ >
where σ(s) 6= null and m(ū) :: S ∈ D,

(xv) < s.m(t̄), σ >→< E, fail > where σ(s) = null.

Example 6.17. Consider the definition of the method setnext of Example
6.16. Assuming that x is a normal variable, σ(this) = o and σ(x) = o′, we
have the following sequence of transitions:

< x.setnext(next), σ >

→ < begin local this, u := x, next; next := u end, σ >

→ < this, u := x, next; next := u; this, u := σ(this), σ(u), σ >

→ < next := u; this, u := σ(this), σ(u), σ′ >

→ < this, u := σ(this), σ(u), σ′[next := σ(o)(next)] >

→ < E, σ[o′ := τ [next := σ(o)(next)]] >,

where σ′ denotes the state

σ[this, u := o′, σ(o)(next)]
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and τ = σ(o′). The first transition expands the method call into the cor-
responding block statement which is entered by the second transition. The
third transition then initializes the local variables this and u which results
in the state σ′. The assignment next := u is executed next. Note that

σ′[next := σ′(u)]

= {by the definition of σ′}

σ′[next := σ(o)(next)]

= {by the definition of state update, σ′(this) = o′ and σ′(o′) = τ }

σ′[o′ := τ [next := σ(o)(next)]].

⊓⊔

Partial Correctness

The proof rules introduced in the previous section are extended to method
calls with parameters, analogously to the way we extended in Chapter 5 the
proof rules for recursive procedures to recursive procedures with parameters.

More specifically, the adjustment of the generic method calls is taken care
of by the following proof rule that refers to the set D of the assumed method
declarations:

RULE 18: INSTANTIATION III

{p} y.m(x̄) {q}

{p[y, x̄ := s, t̄]} s.m(t̄) {q[y, x̄ := s, t̄]}

where y, x̄ is a sequence of simple variables in V ar which do not appear in
D and var(s, t̄) ∩ change(D) = ∅.

Next, the following proof rule is a modification of the recursion III rule
for procedures with parameters to methods with parameters. The provability
symbol ⊢ refers here to the proof system PW augmented with the assignment
axiom 14, the block rule, the instantiation III rule and the auxiliary axioms
and rules A2–A7.

RULE 19: RECURSION VII

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢ {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}
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where mi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.
To prove partial correctness of object-oriented programs with parameters

we use the following proof system POP :

PROOF SYSTEM POP :
This system consists of the group of axioms
and rules 1–6, 10, 14, 18, 19, and A2–A7.

Thus POP is obtained by extending the proof system PW by the block rule,
the assignment to instance variables axiom, the instantiation III rule, the
recursion VII rule, and the auxiliary axioms and rules A2–A7.

Example 6.18. Consider, as in Example 6.15, an instance variable x and the
method setx defined by setx(u) :: x := u. We prove the correctness formula

{true} y.setx(z) {y.x = z}

in the sense of partial correctness. By the recursion VII rule, it suffices to
derive the correctness formula

{true} begin local this, u := y, z; x := u end {y.x = z}.

To prove the last correctness formula we first use the assignment axiom for
instance variables to derive

{(y.x = z)[x := u]} x := u {y.x = z},

where by the definition of substitution

(y.x = z)[x := u] ≡ if y = this then u else y.x fi = z.

Finally, by the assignment axiom for normal variables we have

{if y = y then z else y.x fi = z}
this, u := y, z
{if y = this then u else y.x fi = z}.

By the composition and the consequence rule we obtain

{true} this, u := y, z; x := u {y.x = z}.

An application of the block rule concludes the proof.
Note that even though the assignment to the variable this does not appear

in the considered program, it is crucial in establishing the program correct-
ness. ⊓⊔
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Total Correctness

We conclude the discussion by introducing the following proof rule for total
correctness of method calls with parameters. The provability symbol ⊢ refers
here to the proof system TW augmented with the assignment axiom 14, the
block rule, the instantiation III rule and the auxiliary rules A3–A7.

RULE 20: RECURSION VIII

{p1} s1.m1(ē1) {q1}, . . . , {pn} sn.mn(ēn) {qn} ⊢ {p} S {q},
{p1 ∧ t < z} s1.m1(ē1) {q1}, . . . , {pn ∧ t < z} sn.mn(ēn) {qn} ⊢

{pi ∧ t = z} begin local this, ūi := si, ēi; Si end {qi}, i ∈ {1, . . ., n}
pi → si 6= null, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D, for i ∈ {1, . . . , n}, and z is an integer variable that
does not occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs
as a constant.

To prove total correctness of object-oriented programs with parameters we
use the following proof system TOP :

PROOF SYSTEM TOP :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 18, 20, and A3–A7.

Thus TOP is obtained by extending the proof system TW by the block rule,
the assignment to instance variables axiom, the instantiation III rule, the
recursion VIII rule, and the auxiliary rules A3–A7.

Example 6.19. Given the method setx defined as in Example 6.15 we now
prove the correctness formula

{y 6= null} y.setx(z) {y.x = z}

in the sense of total correctness.
We already proved in Example 6.18

{true} begin local this, u := y, z; x := u end {y.x = z}

and the proof is equally valid in the sense of total correctness. So by the
consequence rule we obtain

{y 6= null} begin local this, u := y, z; x := u end {y.x = z}.
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Because of the form of the precondition we can now derive the desired
correctness formula using the recursion VIII rule. ⊓⊔

6.6 Transformation of Object-Oriented Programs

The proof rules for reasoning about the correctness of object-oriented pro-
grams (with parameters) are derived from the corresponding proof rules for
recursive programs of Chapter 5. In this section we define the underlying
transformation of object-oriented programs (with parameters) into recursive
programs augmented by the failure statement from Section 3.7. This state-
ment is needed to take care of the method calls on the void reference. We
prove then that this transformation preserves both partial and total correct-
ness and use this fact to prove soundness of the introduced proof systems.

First we transform instance variables into normal array variables. For ex-
ample, an instance variable x of a basic type T is transformed into a normal
array variable x of type

object → T.

The normal array variable x stores for each object the value of its instance
variable x. Similarly, an instance array variable a of type T1 × . . . × Tn → T
is transformed into a normal array variable a of type

object × T1 × . . . × Tn → T.

Then for every state σ we denote by Θ(σ) the corresponding ‘normal’ state (as
defined in Section 2.3) which represents the instance variables as (additional)
normal variables. We have

• Θ(σ)(x) = σ(x), for every normal variable x,
• Θ(σ)(x)(o) = σ(o)(x), for every object o ∈ Dobject and normal array

variable x of type object → T being the translation of an instance variable
x of a basic type T ,

• Θ(σ)(a)(o, d1, . . . , dn) = σ(o)(a)(d1, . . . , dn), for every object o ∈ Dobject

and normal array variable a of type object×T1 × . . .×Tn → T being the
translation of an instance array variable a of type T1 × . . .× Tn → T , and
di ∈ DTi

, for i ∈ {1, . . . , n}.

Next we define for every local expression s of the object-oriented program-
ming language the normal expression Θ(s) by induction on the structure of
s. We have the following basic cases.

• Θ(x) ≡ x, for every normal variable x,
• Θ(x) ≡ x[this], for every instance variable x of a basic type,
• Θ(a[s1, . . . , sn]) ≡ a[this, Θ(s1), . . . , Θ(sn)], for every instance array vari-

able a.
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The following lemma clarifies the outcome of this transformation.

Lemma 6.3. (Translation) For all proper states σ

(i) for all local expressions s

S[[s]](σ) = S[[Θ(s)]](Θ(σ)),

where S[[Θ(s)]](Θ(σ)) refers to the semantics of expressions defined in
Section 2.3,

(ii) for all (possibly subscripted) instance variables u and values d of the
same type as u

σ[u := d] = Θ(σ)[Θ(u) := d].

Proof. The proof proceeds by a straightforward induction on the structure
of s and case analysis of u, see Exercise 6.9. ⊓⊔

Next, we extend Θ to statements of the considered object-oriented lan-
guage, by induction on the structure of the statements.

• Θ(u := s) ≡ Θ(u) := Θ(s),

• Θ(s.m(s1, . . . , sn)) ≡ if Θ(s) 6= null → m(Θ(s), Θ(s1), . . . , Θ(sn)) fi,

• Θ(S1; S2) ≡ Θ(S1); Θ(S2),

• Θ(if B then S1 else S2 fi) ≡ if Θ(B) then Θ(S1) else Θ(S2) fi,

• Θ(while B do S od) ≡ while Θ(B) do Θ(S) od,

• Θ(begin local ū := t̄;S end) ≡ begin local ū := Θ(t̄);Θ(S) end,
where Θ(t̄) denotes the result of applying to the expressions of t̄.

So the translation of a method call transforms the called object s into an
additional actual parameter of a call of the procedure m. Additionally a check
for a failure is made. Consequently, we transform every method definition

m(u1, . . . , un) :: S

into a procedure declaration

m(this, u1, . . . , un) :: Θ(S),

which transforms the distinguished normal variable this into an additional
formal parameter of the procedure m. This way the set D of method defini-
tions is transformed into the set

Θ(D) = {m(this, u1, . . . , un) :: Θ(S) | m(u1, . . . , un) :: S ∈ D}

of the corresponding procedure declarations.
We establish the correspondence between an object-oriented program S

and its transformation Θ(S) using an alternative semantics of the recursive
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programs augmented by the failure statement. This way we obtain a precise
match between S and Θ(S). This alternative semantics is defined using a
new transition relation ⇒ for configurations involving recursive programs
augmented by the failure statement, defined as follows:

1.
< S, σ > → < S′, τ >

< S, σ >⇒< S′, τ >
where S is not a failure statement,

2.
< S, σ >⇒< S′, τ >

< if B → S fi, σ >⇒< S′, τ >
where σ |= b,

3. < if B → S fi, σ >⇒< E, fail > where σ |= ¬b.

So in the transition relation ⇒ a successful transition of a failure statement
consists of a transition of its main body, i.e., the successful evaluation of the
Boolean guard itself does not give rise to a transition.

Example 6.20. Let σ(x) = 2 and σ(z) = 4. We have

< if x 6= 0 → y := z div x fi, σ >⇒< E, σ[y := 2] >,

whereas
< if x 6= 0 → y := z div x fi, σ >

→ < y := z div x, σ >

→ < E, σ[y := 2] > .

⊓⊔

We have the following correspondence between the two semantics.

Lemma 6.4. (Correspondence) For all recursive programs S augmented
by the failure statement, all proper states σ, and all proper or fail states τ

< S, σ >→∗< E, τ > iff < S, σ >⇒∗< E, τ > .

Proof. The proof proceeds by induction on the number of transitions, see
Exercise 6.10. ⊓⊔

Further, we have the following correspondence between an object-oriented
program S and its transformation Θ(S).

Lemma 6.5. (Transformation) For all object-oriented programs S, all
proper states σ, and all proper or fail states τ

< S, σ >→< E, τ > iff < Θ(S), Θ(σ) >→< e, Θ(τ) >,

where τ is either a proper state or fail.

Proof. The proof proceeds by induction on the structure of S, see Exercise
6.11. ⊓⊔
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The following theorem then states the correctness of the transformation
Θ.

Theorem 6.1. (Correctness of Θ) For all object-oriented programs S (with
a set of method declarations D) and proper states σ

(i) Θ(M[[S]](σ)) = M[[Θ(S)]](Θ(σ)),
(ii) Θ(Mtot [[S]](σ)) = Mtot [[Θ(S)]](Θ(σ)),

where the given set D of method declarations is transformed into Θ(D).

Proof. The proof combines the Correspondence Lemma 6.4 and the Trans-
formation Lemma 6.5, see Exercise 6.12. ⊓⊔

Soundness

Given the above transformation, soundness of the proof systems for partial
and total correctness of object-oriented programs can be reduced to soundness
of the corresponding proof systems for recursive programs augmented by the
failure statement. For this reduction we also have to transform expressions
of the assertion language. For every global expression e we define Θ(e) by
induction on the structure of e, assuming the above transformation of instance
variables. We have the following main case of navigation expressions:

Θ(e.x) = x[Θ(e)].

The transformation Θ(e) is extended to a transformation Θ(p) of assertions
by a straightforward induction on the structure of p. Correctness of this trans-
formation of assertions is stated in the following lemma. For the assertions
introduced in this chapter we use a more restrictive meaning, so only an
implication holds here.

Lemma 6.6. (Assertion) For all assertions p and proper states σ

σ |= p iff Θ(σ) |= Θ(p).

Proof. The proof proceeds by induction on the structure of p, see Exercise
6.13. ⊓⊔

Corollary 6.1. (Translation I) For all correctness formulas {p} S {q},
where S is an object-oriented program,

if |= {Θ(p)} Θ(S) {Θ(q)} then |= {p} S {q},

and
if |=tot {Θ(p)} Θ(S) {Θ(q)} then |=tot {p} S {q}.
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Proof. It follows directly by the Assertion Lemma 6.6 and the Correctness
Theorem 6.1. ⊓⊔

Finally, we show that a correctness proof of an object-oriented program can
be translated to a correctness proof of the corresponding recursive program.
We need the following lemmas which state that (partial and total) correctness
proofs of a method call from a given set of assumptions can be translated to
correctness proofs of the corresponding procedure call from the corresponding
set of assumptions. For a given set of assumptions A about method calls, we
define the set of assumptions Θ(A) about the corresponding procedure calls
by

{Θ(p)} m(Θ(s), Θ(t̄)) {Θ(q)} ∈ Θ(A) iff {p} s.m(t̄) {q} ∈ A.

Lemma 6.7. (Translation of Partial Correctness Proofs of Method
Calls) Let A be a given set of assumptions about method calls. If

A ⊢ {p} s.m(t̄) {q},

then
Θ(A) ⊢ {Θ(p)} m(Θ(s), Θ(t̄)) {Θ(q)},

where the proofs consist of the applications of the consequence rule, the in-
stantiation rules, and the auxiliary axioms and rules A2–A7.

Proof. The proof proceeds by induction on the length of the derivation, see
Exercise 6.14. ⊓⊔

Lemma 6.8. (Translation of Total Correctness Proofs of Method
Calls) Let A be a given set of assumptions about method calls such that for
{p′} S {q′} ∈ A we have p′ → s 6= null. If

A ⊢ {p} s.m(t̄) {q}

then
Θ(A) ⊢ {Θ(p)} m(Θ(s), Θ(t̄)) {Θ(q)},

and
Θ(p) → Θ(s) 6= null,

where the proofs consist of the applications of the consequence rule, the in-
stantiation rules, and the auxiliary rules A3–A7.

Proof. The proof proceeds by induction on the length of the derivation, see
Exercise 6.15. ⊓⊔

Next, we generalize the above lemmas about method calls to statements.

Lemma 6.9. (Translation Correctness Proofs Statements) Let A a be
set of assumptions about method calls and {p} S {q} a correctness formula
of an object-oriented statement S such that
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A ⊢ {p} S {q},

where ⊢ either refers to the proof system PW or the proof system TW, both
extended with the block rule, the assignment axiom for instance variables, and
the instantiation rule III. In case of a total correctness proof we additionally
assume that p′ → s 6= null, for {p′} s.m(t̄) {q′} ∈ A. Then

Θ(A) ⊢ {Θ(p)} Θ(S) {Θ(q)}.

Proof. The proof proceeds by induction on the structure of S. We treat the
main case of a method call and for the remaining cases we refer to Exercise
6.16. Let S ≡ s.m(t̄). We distinguish the following cases:

Partial correctness. By the Translation Lemma 6.7 we obtain

Θ(A) ⊢ {Θ(p)} m(Θ(s), Θ(t̄)) {Θ(q)},

from which by the consequence rule we derive

Θ(A) ⊢ {Θ(p) ∧ Θ(s) 6= null} m(Θ(s), Θ(t̄)) {Θ(q)}.

We conclude by the failure rule from Section 3.7

Θ(A) ⊢ {Θ(p)} if Θ(s) 6= null → m(Θ(s), Θ(t̄)) fi {Θ(q)}.

Total correctness. By the Translation Lemma 6.8 we obtain

Θ(A) ⊢ {Θ(p)} m(Θ(s), Θ(t̄)) {Θ(q)}

and
Θ(p) → Θ(s) 6= null.

By the failure rule II from Section 3.7 we conclude

Θ(A) ⊢ {Θ(p)} if Θ(s) 6= null → m(Θ(s), Θ(t̄)) fi {Θ(q)}.

⊓⊔

Finally, we have arrived at the following conclusion.

Corollary 6.2. (Translation II) For all correctness formulas {p} S {q},
where S is an object-oriented program,

(i) if {p} S {q} is derivable in the proof system POP, then
{Θ(p)} Θ(S) {Θ(q)} is derivable from PRP,

(ii) if {p} S {q} is derivable in the proof system TOP,
then {Θ(p)} Θ(S) {Θ(q)} is derivable from TRP.
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Proof. The proof proceeds by an induction on the length of the derivation.
The case of an application of the recursion rules VII and VIII is dealt with
by the Translation Lemma 6.9, see Exercise 6.17. ⊓⊔

We can now establish soundness of the considered proof systems.

Theorem 6.2. (Soundness of POP and TOP)

(i) The proof system POP is sound for partial correctness of object-oriented
programs with parameters.

(ii) The proof system TOP is sound for total correctness of object-oriented
programs with parameters.

Proof. By the Translation Corollaries 6.1 and 6.2, Soundness Corollary 5.1
and Soundness Theorem 5.5. ⊓⊔

6.7 Object Creation

In this section we introduce and discuss the dynamic creation of objects. We
extend the set of object-oriented programs with the following statement:

S ::= u := new,

where u is an object variable and new is a keyword that may not be used
as part of local expressions in the programming language. Informally, the
execution of this statement consists of creating a new object and assigning
its identity to the variable u.

Example 6.21. Given the method definition

setnext(u) :: next := u,

which sets the instance object variable next, the following method inserts a
new element in a list of objects linked by their instance variable next:

insert :: begin local
z := next;
next := new;
next.setnext(z)
end.

More specifically, a call this.insert inserts a new element between the object
this and the next object in the list denoted by the instance variable next (of
the current object this). The local variable z is used to store the old value
of the instance variable next. After the assignment of a new object to this
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variable, the method call next.setnext(z) sets the instance variable next of
the newly created object to the value of z. ⊓⊔

Throughout this section we restrict ourselves to pure object-oriented pro-
grams in which a local object expression s can only be compared for equality
(like in s = t) or appear as an argument of a conditional construct (like in
if B then s else t fi). By definition, in local expressions we do not allow

• arrays with arguments of type object,
• any constant of type object different from null,
• any constant op of a higher type different from equality which involves

object as an argument or value type.

We call local expressions obeying these restrictions pure.

Example 6.22. We disallow local expressions a[s1, . . . , si, . . . , sn], where si

is an object expression. We do allow for arrays with value type object, e.g.,
arrays of type integer → object. As another example, we disallow in local
expressions constants like the identity function id on objects. ⊓⊔

Semantics

In order to model the dynamic creation of objects we introduce an instance
Boolean variable created which indicates for each object whether it has been
created. We do not allow this instance variable to occur in programs. It is only
used to define the semantics of programs. In order to allow for unbounded
object creation we require that Dobject is an infinite set, whereas in every
state σ the set of created objects, i.e., those objects o ∈ Dobject for which
σ(o)(created) = true, is finite.

We extend the state update by σ[u := new] which describes an assignment
involving as a side-effect the creation of a new object and its default initial-
ization. To describe this default initialization of instance variables of newly
created objects, we introduce an element initT ∈ DT for every basic type T .
We define initobject = null and initBoolean = true. Further, let init denote
the local (object) state such that

• if v ∈ IV ar is of a basic type T then

init(v) = initT ,

• if the value type of an array variable a ∈ IV ar is T and di ∈ DTi
for

i ∈ {1, . . . , n} then

init(a)(d1, . . . , dn) = initT .
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To generate new objects we introduce a function ν such that for every
(proper) state σ the object ν(σ) does not exist in σ. Formally, we have for
every (proper) state σ

ν(σ) ∈ Dobject and σ(ν(σ))(created) = false.

The state update σ[u := new] is then defined by

σ[o := init][u := o],

where o = ν(σ).

The operational semantics of an object creation statement is described by
the following rule:

(xvi) < u := new, σ >→< E, σ[u := new] >,

where u is a (possibly subscripted) object variable.

Example 6.23. For a (proper) state σ let O defined by

O = {o ∈ Dobject | σ(o)(created) = true}

denote the (finite) set of created objects in σ. Consider o = ν(σ). Thus
σ(o)(created) = false and o 6∈ O. Given the instance object variable next we
have the following transition:

< next := new, σ > → < E, τ > where τ = σ[o := init][next := o] > .

Then τ(next) = τ(τ(this))(next) = o, τ(o)(created) = true and
τ(o)(next) = null. The set of created objects in τ is given by O ∪ {o}. ⊓⊔

Assertions

In the programming language we can only refer to objects that exist; objects
that have not been created cannot be referred to and thus do not play a role.
We want to reason about programs at the same level of abstraction. Therefore,
we do not allow the instance Boolean variable created to occur in assertions.
Further, we restrict the semantics of assertions (as defined in Section 6.3)
to states which are consistent. By definition, these are states in which this
and null refer to created objects and all (possibly subscripted) normal object
variables and all (possibly subscripted) instance object variables of created
objects also refer to created objects.

Example 6.24. Let σ be a consistent (proper) state. We have that
σ(null)(created) = true and σ(σ(this))(created) = true. For every nor-
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mal object variable x with σ(x) = o we have σ(o)(created) = true. Further,
for every instance object variable y we have that σ(σ(y))(created) = true.
Note that σ(y) = σ(σ(this))(y). In general, for every global object expression
s we have σ(σ(s))(created) = true. That is, in σ we can only refer to created
objects. ⊓⊔

In order to reason about object creation we wish to define a substitution
operation [x := new], where x ∈ V ar is a simple object variable, such that

σ |= p[x := new] iff σ[x := new] |= p

holds for all assertions p and all states σ. However, we cannot simply replace
x in p by the keyword new because it is not an expression of the assertion
language. Also, the newly created object does not exist in σ and thus cannot
be referred to in σ, the state prior to its creation. To obtain a simple definition
of p[x := new] by induction on p, we restrict ourselves here to assertions p in
which object expressions can only be compared for equality or dereferenced,
and object expressions do not appear as an argument of any other construct
(including the conditional construct).

Formally, a global expression in which object expressions s can only be
compared for equality (like in s = t) or dereferenced (like in s.x) is called
pure. By definition, in pure global expressions we disallow

• arrays with arguments of type object,
• any constant of type object different from null,
• any constant op of a higher type different from equality which involves

object as an argument or value type,
• conditional object expressions.

Note that in contrast to pure local expressions, in pure global expressions
we also disallow object expressions as arguments of a conditional construct,
like in if B then x else y fi where x and y are object variables. On the other
hand, in pure global expressions we can dereference object expressions, like
in s.x where s is an object expression.

An assertion is called pure if it is built up from pure global expressions
by Boolean connectives and quantification, but not over object variables or
array variables with value type object. Such quantification requires a more
sophisticated analysis as the following example shows.
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Example 6.25. Consider the assertion

p ≡ ∀x : ∃n : a[n] = x,

where a is a normal array variable of type integer → object, n ∈ V ar is an
integer variable, and x ∈ V ar is a simple object variable. Note that p is not
pure. Since we restrict the semantics of assertions to consistent states, the
universal quantifier ∀x and the elements of the array a range over created
objects. Thus p states that the array a stores all created objects (and only
those). As a consequence p is affected by an object creation statement u :=
new. More specifically, we do not have

{p} u := new {p},

so the invariance axiom does not hold any more. In fact,

{p} u := new {∀n : a[n] 6= u}

holds. ⊓⊔

First, we define the substitution operation for expressions. The formal
definition of s[x := new], where s 6≡ x is a pure global expression and x ∈ V ar
is a simple object variable, proceeds by induction on the structure of s. We
have the following main cases:

• if s ≡ x.u and the (possibly subscripted) instance variable u is of type T
then

s[x := new] ≡ initT ,

• if s ≡ s1.u for s1 6≡ x then

s[x := new] ≡ s1[x := new].u[x := new],

• if s ≡ (s1 = s2) for s1 6≡ x and s2 6≡ x then

s[x := new] ≡ (s1[x := new] = s2[x := new]),

• if s ≡ (x = t) (or s ≡ (t = x)) for t 6≡ x then

s[x := new] ≡ false,

• if s ≡ (x = x) then
s[x := new] ≡ true.

The other cases are standard.

Example 6.26. Let s ≡ if B then s1 else s2 fi be a pure global expression
and x ∈ V ar be a simple object variable. Then
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s[x := new] ≡ if B[x := new] then s1[x := new] else s2[x := new] fi.

Note that this is well-defined: since s cannot be an object expression we
have that s1 6≡ x and s2 6≡ x. Similarly, if s ≡ a[s1, . . . , sn] is a pure global
expression then

s[x := new] ≡ a[s1[x := new], . . . , sn[x := new]].

Note that si 6≡ x because si cannot be an object expression, for i ∈ {1, . . . , n}.
Next we calculate

(x = this)[x := new] ≡ false ,

(a[s] = x)[x := new] ≡ false ,

and
(x.y = this)[x := new]

≡ (x.y)[x := new] = this[x := new]

≡ initT = this,

where the instance variable y is of type T . ⊓⊔

To prove correctness of the substitution operation [x := new] for object
creation we need the following lemma which states that no pure global ex-
pression other than x can refer to the newly created object.

Lemma 6.10. Let s 6≡ x be a pure global object expression and x ∈ V ar be
a simple object variable. Further, let σ be a consistent proper state. Then

σ[x := new](s) 6= σ[x := new](x).

Proof. The proof proceeds by induction on the structure of s (see Exer-
cise 6.18). ⊓⊔

The following example shows that in the above lemma the restriction to
pure global expressions and to consistent (proper) states is necessary.

Example 6.27. Let x be a normal object variable. Then we have for global
expressions s of the form

• s ≡ id(x), where the constant id is interpreted as the identity function on
objects, and

• s ≡ if true then x else y fi, where y is also a normal object variable,

that σ[x := new](s) = σ[x := new](x).
Next, consider a normal object variable y 6≡ x and a state σ such that

σ(y) = ν(σ). Then σ(σ(y))(created) = false by the definition of the func-
tion ν. So σ is not a consistent state. We calculate that σ[x := new](y) =
σ(y) = σ[x := new](x). ⊓⊔
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We extend the substitution operation to pure assertions along the lines of
Section 2.7. We have the following substitution lemma.

Lemma 6.11. (Substitution for Object Creation) For all pure global
expressions s, all pure assertions p, all simple object variables x and all con-
sistent proper states σ,

(i) σ(s[x := new]) = σ[x := new](s),
(ii) σ |= p[x := new] iff σ[x := new] |= p.

Proof. The proof proceeds by induction on the complexity of s and p, using
Lemma 6.10 for the base case of Boolean expressions (see Exercise 6.19). ⊓⊔

The following lemma shows that the restriction concerning conditional
expressions in pure assertions does not affect the expressiveness of the asser-
tion language because conditional expressions can always be removed. The
restriction only simplified the definition of substitution operator [x := new].

Lemma 6.12. (Conditional Expressions) For every assertion p there ex-
ists a logically equivalent assertion which does not contain conditional expres-
sions.

Proof. See Exercise 6.20. ⊓⊔

The following example gives an idea of the proof.

Example 6.28. A Boolean conditional expression if B then s else t fi can
be eliminated using the following logical equivalence:

if B then s else t fi ↔ (B ∧ s) ∨ (¬B ∧ t).

A conditional expression if B then s else t fi in the context of an equality
or a dereferencing operator can be moved outside as follows:

• (if B then s else t fi = t′) = if B then s = t′ else t = t′ fi,
• if B then s else t fi.y = if B then s.y else t.y fi.

In general, we have the equality

op(t1, . . . , if B then s else t fi, . . . , tn)

= if B then op(t1, . . . , s, . . . , tn) else op(t1, . . . , t, . . . , tn) fi

for every constant op of a higher type. ⊓⊔

Verification

The correctness notions for object-oriented programs with object creation are
defined in the familiar way using the semantics M and Mtot (note that the
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partial correctness and the total correctness semantics of an object creation
statement coincide). To ensure that when studying program correctness we
limit ourselves to meaningful computations of object-oriented programs, we
provide the following new definition of the meaning of an assertion:

[[p]] = {σ | σ is a consistent proper state such that

σ(this) 6= null and σ |= p },

and say that an assertion p is is true, or holds, if

[[p]] = {σ | σ is a consistent proper state such that σ(this) 6= null}.

We have the following axiom and rule for object creation.

AXIOM 21: OBJECT CREATION

{p[x := new]} x := new {p},

where x ∈ V ar is a simple object variable and p is a pure assertion.

RULE 22: OBJECT CREATION

p′ → p[u := x]

{p′[x := new]} u := new {p}

where u is a subscripted normal object variable or a (possibly subscripted)
instance object variable, x ∈ V ar is a fresh simple object variable which does
not occur in p, and p′ is a pure assertion.

The substitution [u := x] replaces every possible alias of u by x. Note that
this rule models the object creation u := new by the statement

x := new;u := x,

and as such allows for the application of the substitution [x := new] defined
above.

Example 6.29. Consider the object creation statement

next := new

for the object instance variable next and the postcondition

p ≡ y.next = next.

We wish to prove
{y = this} next := new {p}.

First, we calculate for a fresh variable x ∈ V ar:
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p[next := x] ≡ if y = this then x else y.next fi = x.

Consider now

p′ ≡ if y = this then x = x else y.next = x fi.

Observe that p′ → p[next := x]. Next, we calculate

p′[x := new]

≡ if (y = this)[x := new]
then(x = x)[x := new] else (y.next = x)[x := new] fi

≡ if y = this then true else false fi,

which is logically equivalent to y = this. By the object creation rule and the
consequence rule, we thus derive

{y = this} next := new {p},

as desired. ⊓⊔

To prove partial correctness of object-oriented programs with object
creation we use the following proof system POC :

PROOF SYSTEM POC :
This system consists of the group of axioms
and rules 1–6, 10, 14, 18, 19, 21, 22 and A2–A7.

Thus POC is obtained by extending the proof system POP by the axiom and
rule for object creation.

To prove total correctness of object-oriented programs with object creation
we use the following proof system TOC :

PROOF SYSTEM TOC :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 18, 20–22 and A3–A7.

Thus TOC is obtained by extending the proof system TOP by the axiom and
rule for object creation.

Soundness

We have the following soundness theorem for object creation.
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Theorem 6.3. (Soundness of POC and TOC)

(i) The proof system POC is sound for partial correctness of object-oriented
programs with object creation.

(ii) The proof system TOC is sound for total correctness of object-oriented
programs with object creation.

Proof. Axiom 21 is true and rule 22 is sound, see Exercise 6.21. ⊓⊔

6.8 Case Study: Zero Search in Linked List

We now return to the method find defined in Example 6.5:

find :: if val = 0
then return := this
else if next 6= null

then next.find
else return := null
fi

fi

where val is an instance integer variable, next is an instance object variable,
and return is a normal object variable used to store the result of the method.

In order to reason about this method we introduce a normal array variable
a of type integer → object such that the section a[k : n] stores a linked list
of objects, as expressed by

∀ i ∈ [k : n − 1] : a[i].next = a[i + 1].

Partial Correctness

We first prove that upon termination the call this.find returns in the variable
return the first object which can be reached from this that stores zero, if
there exists such an object and otherwise return = null. To this end, we
introduce the assertion p defined by

p ≡ y = a[k] ∧ a[n] = return ∧
∀ i ∈ [k : n − 1] : (a[i] 6= null ∧ a[i].val 6= 0 ∧ a[i].next = a[i + 1]),

where y is a normal object variable and k and n are normal integer variables.
The variable y is used as a generic representation of the caller of the method
find. The assertion p states that the section a[k : n] stores a linked list of
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objects which starts with the object y, ends with return, and all its objects,
except possibly the last one, are different from null and do not store zero.

We prove
{true} this.find {q[y := this]},

where q is defined by

q ≡ (return = null ∨ return.val = 0) ∧ ∃ a : ∃ k : ∃ n ≥ k : p.

The postcondition q thus states that the returned object is null or stores
zero and that for some array section a[k : n] the above assertion p holds.

We establish a more general correctness formula, namely

{true} y.find {q}.

from which the desired formula follows by the instantiation II rule.
By the recursion V rule it suffices to prove

{true} y.find {q} ⊢ {true} begin local this := y; S end {q},

where S denotes the body of the method find and ⊢ refers to the proof
system POP with the recursion VII rule omitted.

We present the proof in the form of a proof outline that we give in Fig-
ure 6.4.

To justify this proof outline it suffices to establish the following three
claims.

Claim 1. {this = y ∧ val = 0} return := this {q}.

Proof. We show

(this = y ∧ val = 0) → q[return := this],

from which the claim follows by the assignment axiom for normal variables
and the consequence rule.

First, since val is an instance variable, we have

val = 0 → this.val = 0,

which takes care of the first conjunct of q[return := this].
Next, to satisfy the second conjunct of q[return := this] under the as-

sumption this = y, it suffices to take array a such that a[k] = y and n = k.
Indeed, we then have both y = a[k] and a[n] = this and the third conjunct
of p[return := this] vacuously holds since we then have k > n − 1. ⊓⊔

Claim 2.
{true} y.find {q} ⊢ {this = y ∧ val 6= 0 ∧ next 6= null} next.find {q}.
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{true}
begin local
{true}
this := y;
{this = y}
if val = 0
then

{this = y ∧ val = 0}
return := this
{q}

else
{this = y ∧ val 6= 0}
if next 6= null
then

{this = y ∧ val 6= 0 ∧ next 6= null}
next.find
{q}

else
{this = y ∧ val 6= 0 ∧ next = null}
return := null
{q}

fi
{q}

fi
{q}
end
{q}

Fig. 6.4 Proof outline showing partial correctness of the find method.

Proof. We first apply the instantiation II rule to the assumption and obtain

{true} next.find {q[y := next]}.

Next, applying the invariance rule we obtain

{this = y ∧ val 6= 0 ∧ next 6= null}
next.find
{q[y := next] ∧ this = y ∧ val 6= 0 ∧ next 6= null}.

Now, observe that

(q[y := next] ∧ this = y ∧ val 6= 0 ∧ next 6= null) → q.
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Indeed, the first conjunct of q[y := next] and q are identical. Further,
assuming q[y := next] ∧ this = y ∧ val 6= 0 ∧ next 6= null we first take
the array section a[k : n] which ensures the truth of the second conjunct of
q[y := next]. Then the array section a[k−1 : n] with a[k−1] = y ensures the
truth of the second conjunct of q[y := next]. Indeed, we then have a[k− 1] 6=
null∧a[k−1].val 6= 0∧a[k−1].next = a[k], as by the definition of the meaning
of an assertion both this 6= null and val = this.val ∧ next = this.next.

We now obtain the desired conclusion by an application of the consequence
rule. ⊓⊔

Claim 3. {this = y ∧ val 6= 0 ∧ next = null} return := null {q}.

Proof. We show

(this = y ∧ val 6= 0 ∧ next = null) → q[return := null],

from which the claim follows by the assignment axiom and the consequence
rule.

The first conjunct of q[return := null] holds since it contains null = null
as a disjunct. Next, to satisfy the second conjunct of q[return := null] under
the assumption this = y ∧ val 6= 0 ∧ next = null, it suffices to take array a
such that a[k] = y and n = k + 1. Indeed, we then have both y = a[k] and
a[n] = null. Moreover, the third conjunct of p[return := this] holds since
we then have a[k] 6= null ∧ a[k].val 6= 0 ∧ a[k].next = a[k + 1], as by the
definition of the meaning of an assertion this 6= null. ⊓⊔

Total Correctness

In order for this.find to terminate we require that the chain of objects
starting from this and linked by next ends with null or contains an object
that stores zero.

To express this we first introduce the following assertion p:

p ≡ k ≤ n ∧ (a[n] = null ∨ a[n].val = 0)∧
∀ i ∈ [k : n − 1] : (a[i] 6= null ∧ a[i].next = a[i + 1]),

which states that the section a[k : n] stores a linked list of objects that ends
with null or with an object that stores zero. Let r be defined by

r ≡ y = a[k] ∧ y 6= null ∧ p.

We now prove

{∃ a : ∃ k : ∃ n ≥ k : r[y := this]} this.find {true}
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in the sense of total correctness.
As the bound function we choose

t ≡ n − k.

As in the proof of partial correctness we use the normal object variable y as
a generic representation of the caller of the method find.

We now show

{r ∧ t < z} y.find {true} ⊢
{r ∧ t = z} begin local this := y; S end {true}

(6.4)

where, as above, S denotes the body of the method find and where ⊢ refers
to the proof system TOP with the recursion VIII rule omitted.

To this end, we again present the proof in the form of a proof outline that
we give in Figure 6.5.

We only need to justify the correctness formula involving the method call
next.find. To this end, we first apply the instantiation II rule to the assump-
tion and replace y by next:

{r[y := next] ∧ n − k < z} next.find {true}.

Next, we apply the substitution rule and replace k by k + 1:

{r[k, y := k + 1, next] ∧ n − (k + 1) < z} next.find {true}.

Now note that

(r ∧ this = y ∧ t = z ∧ val 6= 0 ∧ next 6= null)
→ (r[k, y := k + 1, next] ∧ n − (k + 1) < z).

Indeed, we have by the definition of r

r ∧ this = y ∧ val 6= 0
→ (a[n] = null ∨ a[n].val = 0) ∧ this = a[k] ∧ val 6= 0 ∧ k ≤ n
→ (a[n] = null ∨ a[n].val = 0) ∧ a[k] 6= null ∧ a[k].val 6= 0 ∧ k ≤ n
→ k < n,

where the second implication holds since

this 6= null ∧ val = this.val.

Hence
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{r ∧ t = z}
begin local
{r ∧ t = z}
this := y;
{r ∧ this = y ∧ t = z}
if val = 0
then

{true}
return := this
{true}

else
{r ∧ this = y ∧ t = z ∧ val 6= 0}
if next 6= null
then

{r ∧ this = y ∧ t = z ∧ val 6= 0 ∧ next 6= null}
{r[k, y := k + 1, next] ∧ n − (k + 1) < z}
next.find
{true}

else
{true}
return := null
{true}

fi
{true}

fi
{true}
end
{true}

Fig. 6.5 Proof outline showing termination of the find method.

(r ∧ this = y ∧ t = z ∧ val 6= 0 ∧ next 6= null)
→ (this = a[k] ∧ k < n ∧ next 6= null ∧ p)
→ (this = a[k] ∧ a[k].next = a[k + 1] ∧ next 6= null ∧ p[k := k + 1])
→ (next = a[k + 1] ∧ next 6= null ∧ p[k := k + 1])
→ r[k, y := k + 1, next],

where we make use of the fact that next = this.next.
Moreover

t = z → n − (k + 1) < z.

This completes the justification of the proof outline. By the recursion VI rule
we now derive from (6.4) and the fact that r → y 6= null the correctness
formula
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{r} y.find {true}.

By the instantiation II rule we now obtain

{r[y := this]} this.find {true},

from which the desired correctness formula follows by the elimination rule.

6.9 Case Study: Insertion into a Linked List

We now return to the insert method defined in Example 6.21:

insert :: begin local
z := next;
next := new;
next.setnext(z)
end

where the method setnext is defined by

setnext(u) :: next := u.

In order to express the correctness of the insert method we introduce as in
the previous case study an array variable a ∈ V ar of type integer → object
to store the list of objects linked by their instance variable next. Further,
we introduce the simple object variable y ∈ V ar to represent a generic caller
and the integer variable k ∈ V ar to denote the position of the insertion.

As a precondition we use the assertion

p ≡ y = a[k] ∧ k ≥ 0 ∧ ∀n ≥ 0 : a[n].next = a[n + 1],

which states that y appears at the kth position and that the objects stored
in a are linked by the value of their instance variable next. Note that we also
require for a[n] = null that a[n].next = a[n+1]. By putting null.next = null
this requirement can easily be met.

Insertion of a new object at position k is described by the postcondition

q ≡ q0 ∧ q1 ∧ q2,

where

• q0 ≡ ∀n ≥ 0 : if a[n] 6= a[k] then a[n].next = a[n + 1] fi,
• q1 ≡ ∀n ≥ 0 : a[n] 6= a[k].next,
• q2 ≡ a[k].next.next = a[k + 1].

The assertion q0 states that the chain of objects is ‘broken’ at the kth po-
sition. The assertion q1 states that the instance variable next of the object
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at position k points to a new object. Finally, the assertion q2 states that the
instance variable next of this new object refers to the object at position k+1.

We prove
{p} y.insert {q}

in the sense of partial correctness. By the simplified version of the recursion V
rule, it suffices to prove

{p} begin local this := y;S end {q},

where S denotes the body of the method insert. For this it suffices, by the
recursion VII rule, to prove for suitable assertions p′ and q′

{p′} next.setnext(z) {q′} ⊢ {p} begin local this := y;S end {q} (6.5)

and
{p′} begin local this, u := next, z;next := u end {q′}, (6.6)

where ⊢ refers to the proof system POC with the recursion VII rule omitted.
We prove (6.5) and (6.6) in the form of proof outlines given below in

Figures 6.6 and 6.7, respectively.
In these proofs we use

p′ ≡ q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]

and
q′ ≡ q.

For the justification of these proof outlines we introduce the abbreviation
t(l, v) defined by

t(l, v) ≡ (a[l].next)[next := v]
≡ if a[l] = this then v else a[l].next fi,

where l ∈ V ar ranges over simple integer variables and v ∈ V ar ranges over
simple object variables.

To justify the proof outline in Figure 6.6 it suffices to establish the following
four claims.

Claim 1. {p} this := y {p ∧ this = y}.

Proof. By the assignment axiom for normal variables we have

{p ∧ y = y} this := y {p ∧ this = y}.

So we obtain the desired result by a trivial application of the consequence
rule. ⊓⊔

Claim 2. {p ∧ this = y} z := next {p ∧ this = y ∧ z = next}.
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{p}
begin local
{p}
this := y;
{p ∧ this = y}
begin local
{p ∧ this = y}
z := next;
{p ∧ this = y ∧ z = next}
{p ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
next := new;
{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
next.setnext(z)
{q}
end
{q}
end
{q}

Fig. 6.6 Proof outline showing partial correctness of the insert method.

Proof. This claim also follows by an application of the assignment axiom
for normal variables and a trivial application of the consequence rule. ⊓⊔

Claim 3. (p ∧ this = y ∧ z = next) → (k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]).

Proof. It suffices to observe that

• (p ∧ this = y) → this = a[k],
• (this = a[k] ∧ z = next) → z = a[k].next,
• p → a[k].next = a[k + 1].

For the second implication recall that z = next stands for z = this.next. ⊓⊔

Claim 4. {p ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
next := new
{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}.

Proof. First, we introduce a fresh simple object variable x ∈ V ar and
calculate

q0[next := x] ≡ ∀n ≥ 0 : if a[n] 6= a[k] then t(n, x) = a[n + 1] fi,

where t(n, x) ≡ if a[n] = this then x else a[n].next fi. We observe that
this = a[k] ∧ a[n] 6= a[k] implies a[n] 6= this and that a[n] 6= this im-
plies t(n, x) = a[n].next. Replacing t(n, x) in q0[next := x] by a[n].next we
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obtain q0 itself. So we have that

this = a[k] ∧ q0 → q0[next := x].

Since x does not occur in this = a[k] ∧ q0, we have

this = a[k] ∧ q0 ≡ (this = a[k] ∧ q0)[x := new]

and derive by the object creation rule

{this = a[k] ∧ q0} next := new {q0}.

Since p → q0, we derive by the consequence rule that

{p ∧ this = a[k]} next := new {q0}. (6.7)

Next, we calculate

q1[next := x] ≡ ∀n ≥ 0 : a[n] 6= t(k, x),

where t(k, x) ≡ if a[k] = this then x else a[k].next fi. Since

a[n] 6= t(k, x) ↔ if a[k] = this then a[n] 6= x else a[n] 6= a[k].next fi

it follows that

∀n ≥ 0 : if a[k] = this then a[n] 6= x else a[n] 6= a[k].next fi

→ q1[next := x].

Now we calculate

if a[k] = this then a[n] 6= x else a[n] 6= a[k].next fi[x := new]

≡ if (a[k] = this)[x := new]
then (a[n] 6= x)[x := new]
else (a[n] 6= a[k].next)[x := new]
fi

≡ if a[k] = this then ¬false else a[n] 6= a[k].next fi.

So

(∀n ≥ 0 : if a[k] = this then a[n] 6= x else a[n] 6= a[k].next fi)[x := new]
≡ ∀n ≥ 0 : if a[k] = this then ¬false else a[n] 6= a[k].next fi.

Further, we have

this = a[k] →∀n ≥ 0 : if a[k] = this then ¬false else a[n] 6= a[k].next fi.

So by the object creation rule and the consequence rule, we derive
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{this = a[k]} next := new {q1}. (6.8)

By an application of the conjunction rule to the correctness formulas (6.7)
and (6.8), we therefore obtain

{p ∧ this = a[k]} next := new {q0 ∧ q1}.

An application of the invariance rule then gives us the desired result. ⊓⊔

{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
begin local
{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
this, u := next, z;
{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k].next ∧ u = a[k + 1]}
next := u
{q}
end
{q}

Fig. 6.7 Proof outline showing partial correctness of the setnext method.

To justify the proof outline in Figure 6.7 it suffices to establish the following
two claims.

Claim 5. {q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k] ∧ z = a[k + 1]}
this, u := next, z
{q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k].next ∧ u = a[k + 1]}.

Proof. By the assignment axiom for normal variables and the consequence
rule, it suffices to observe that this = a[k] → next = a[k].next. ⊓⊔

Claim 6. {q0 ∧ q1 ∧ k ≥ 0 ∧ this = a[k].next ∧ u = a[k + 1]}
next := u
{q}.

Proof. First, we calculate

q0[next := u] ≡ ∀n ≥ 0 : if a[n] 6= a[k] then t(n, u) = a[n + 1] fi,

where t(n, u) ≡ if a[n] = this then u else a[n].next fi. Next we observe that
q1 ∧ this = a[k].next ∧ n ≥ 0 implies a[n] 6= this and a[n] 6= this implies
t(n, u) = a[n].next. Replacing t(n, u) in q0[next := u] by a[n].next we obtain
q0 itself. From this we conclude

(q0 ∧ q1 ∧ this = a[k].next) → q0[next := u].
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By the assignment axiom for instance variables and the consequence rule, we
therefore derive the correctness formula

{q0 ∧ q1 ∧ this = a[k].next} next := u {q0}. (6.9)

Next, we calculate

q1[next := u] ≡ ∀n ≥ 0 : a[n] 6= t(k, u),

where t(k, u) ≡ if a[k] = this then u else a[k].next fi. Note that q1 ∧ k ≥
0 ∧ this = a[k].next implies a[k] 6= this and a[k] 6= this implies t(k, u) =
a[k].next. Replacing t(k, u) in q1[next := u] by a[k].next we obtain q1 itself.
From this we conclude

(q1 ∧ k ≥ 0 ∧ this = a[k].next) → q1[next := u].

By the assignment axiom for instance variables and the consequence rule, we
thus derive the correctness formula

{q1 ∧ k ≥ 0 ∧ this = a[k].next} next := u {q1}. (6.10)

Finally, we calculate

q2[next := u] ≡ if this = t(k, u) then u else t(k, u).next fi = a[k + 1].

As already inferred above, we have that q1 ∧ k ≥ 0∧ this = a[k].next implies
t(k, u) = a[k].next. Replacing t(k, u) in q2[next := u] by a[k].next we obtain
the assertion

if this = a[k].next then u else a[k].next.next fi = a[k + 1]

which is clearly implied by this = a[k].next ∧ u = a[k + 1]. From this we
conclude

(q1 ∧ k ≥ 0 ∧ this = a[k].next ∧ u = a[k + 1]) → q2[next := u].

By the assignment axiom for instance variables and the consequence rule, we
thus derive the correctness formula

{q1 ∧ k ≥ 0 ∧ this = a[k].next ∧ u = a[k + 1]} next := u {q2}. (6.11)

Applying the conjunction rule to the correctness formulas (6.9), (6.10) and
(6.11) finally gives us the desired result. ⊓⊔
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6.10 Exercises

6.1. Compute

(i) σ[a[0] := 1](y.a[x]) where y, x ∈ V ar and a ∈ IV ar,
(ii) σ[x := σ(this)][y := 0](x.y) where x ∈ V ar and y ∈ IV ar,
(iii) σ[σ(this) := τ [x := 0]](x), where x ∈ IV ar,
(iv) σ(y.next.next).

6.2. Compute

(i) (z.x)[x := 0],
(ii) (z.a[y])[a[0] := 1],
(iii) (this.next.next)[next := y].

6.3. Prove the Substitution Lemma 6.2.

6.4. Given an instance variable x and the method getx to get its value defined
by

getx :: r := x,

where r is a normal variable, prove

{true} y.getx {r = y.x}.

6.5. Given the method definition

inc :: count := count + 1,

where count is an instance integer variable, prove

{up.count = z} up.inc {up.count = z + 1},

where z is a normal variable.

6.6. Let next be an instance object variable and r be a normal object variable.
The following method returns the value of next:

getnext :: r := next.

Prove
{next.next = z}next.getnext; next := r{next = z},

where z is a normal object variable.

6.7. We define the method insert by

insert(u) :: u.setnext(next);next := u,

where next is an instance object variable, u is a normal object variable and
setnext is defined by
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setnext(u) :: next := u.

Prove
{z = next} this.insert(x) {next = x ∧ x.next = z},

where x and z are normal object variables.

6.8. To compute the sum of the instance integer variables val we used in
Example 6.4 a normal integer variable sum, a normal object variable current
that points to the current object, and two methods, add and move, defined
as follows:

add :: sum := sum + val,
move :: current := next.

Then the following main statement S computes the desired sum:

S ≡ sum := 0;
current := first;
while current 6= null do current.add; current.move od.

Let a be a normal array variable of type integer → object and the assertions
p and q be defined by

p ≡ a[0] = first∧a[n] = null∧∀i ∈ [0 : n−1] : a[i] 6= null∧a[i].next = a[i+1]

and

q ≡ sum =

n−1∑

i=0

a[i].

Prove {p} S {q} in the sense of both partial and total correctness.

6.9. Prove the Translation Lemma 6.3.

6.10. Prove the Correspondence Lemma 6.4.

6.11. Prove the Transformation Lemma 6.5.

6.12. Prove the Correctness Theorem 6.1.

6.13. Prove the Assertion Lemma 6.6.

6.14. Prove the Translation Lemma 6.7.

6.15. Prove the Translation Lemma 6.8.

6.16. Prove the Translation of Correctness Proofs of Statements Lemma 6.9.

6.17. Prove the Translation Corollary 6.2.

6.18. Prove Lemma 6.10.
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6.19. Prove the Substitution for Object Creation Lemma 6.11.

6.20. Prove the Conditional Expressions Lemma 6.12.

6.21. Prove Theorem 6.3.

6.22. Given the normal array variable a of type integer → object and the
normal integer variable n, let the assertion p be defined by

p ≡ ∀i ∈ [0 : n] : ∀j ∈ [0 : n] : if i 6= j then a[i] 6= a[j] fi.

Prove
{p} n := n + 1; a[n] := new {p}.
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A S WE HAVE seen in Chapter 1, concurrent programs can be quite

difficult to understand in detail. That is why we introduce and study

them in several stages. In this part of the book we study parallel programs,

and in this chapter we investigate disjoint parallelism, the simplest form of

parallelism. Disjointness means here that the component programs have only

reading access to common variables.

Many phenomena of parallel programs can already be explained in this

setting. In Chapter 8 we study parallelism with shared variables and in Chap-

ter 9 we add synchronization to shared variable parallelism. Disjoint paral-

lelism provides a good preparation for studying these extensions. Disjoint

parallelism is also a good starting point for studying distributed programs in

Chapter 11.

Under what conditions can parallel execution be reduced to a sequen-

tial execution? In other words, is there any simple syntactic criterion that

guarantees that all computations of a parallel program are equivalent to the

245
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sequential execution of its components? Such questions led Hoare to an in-

troduction of the concept of disjoint parallelism (Hoare [1972,1975]). In this

chapter we present an in-depth study of this concept.

After introducing the syntax of disjoint parallel programs (Section 7.1) we

define their semantics (Section 7.2). We then prove that all computations of a

disjoint parallel program starting in the same initial state produce the same

output (the Determinism Lemma).

In Section 7.3 we study the proof theory of disjoint parallel programs.

The proof rule for disjoint parallelism simply takes the conjunction of

pre- and postconditions of the component programs. Additionally, we need

a proof rule dealing with the so-called auxiliary variables; these are vari-

ables used to express properties about the program execution that cannot be

expressed solely in terms of program variables.

As a case study we prove in Section 7.4 the correctness of a disjoint parallel

program FIND that searches for a positive element in an integer array.
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7.1 Syntax

Two while programs S1 and S2 are called disjoint if neither of them can
change the variables accessed by the other one; that is, if

change(S1) ∩ var(S2) = ∅

and
var(S1) ∩ change(S2) = ∅.

Recall from Chapter 3 that for an arbitrary program S, change(S) is the set
of simple and array variables of S that can be modified by it; that is, to which
a value is assigned within S by means of an assignment. Note that disjoint
programs are allowed to read the same variables.

Example 7.1. The programs x := z and y := z are disjoint because
change(x := z) = {x}, var(y := z) = {y, z} and var(x := z) = {x, z},
change(y := z) = {y}.

On the other hand, the programs x := z and y := x are not disjoint
because x ∈ change(x := z) ∩ var(y := x), and the programs a[1] := z and
y := a[2] are not disjoint because a ∈ change(a[1] := z) ∩ var(y := a[2]). ⊓⊔

Disjoint parallel programs are generated by the same clauses as those defin-
ing while programs in Chapter 3 together with the following clause for dis-
joint parallel composition:

S ::= [S1‖. . .‖Sn],

where for n > 1, S1, . . ., Sn are pairwise disjoint while programs, called the
(sequential) components of S. Thus we do not allow nested parallelism, but we
allow parallelism to occur within sequential composition, conditional state-
ments and while loops.

It is useful to extend the notion of disjointness to expressions and asser-
tions. An expression t and a program S are called disjoint if S cannot change
the variables of t; that is, if

change(S) ∩ var(t) = ∅.

Similarly, an assertion p and a program S are called disjoint if S cannot
change the variables of p; that is, if

change(S) ∩ var(p) = ∅.
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7.2 Semantics

We now define semantics of disjoint parallel programs in terms of transitions.
Intuitively, a disjoint parallel program [S1‖. . .‖Sn] performs a transition if
one of its components performs a transition. This form of modeling concur-
rency is called interleaving. Formally, we expand the transition system for
while programs by the following transition rule

(xvii)
< Si, σ > → < Ti, τ >

< [S1‖. . .‖Si‖. . .‖Sn], σ > → < [S1‖. . .‖Ti‖. . .‖Sn], τ >

where i ∈ {1, . . . , n}.

Computations of disjoint parallel programs are defined like those of se-
quential programs. For example,

< [x := 1‖y := 2‖z := 3], σ >

→ < [E‖y := 2‖z := 3], σ[x := 1] >

→ < [E‖E‖z := 3], σ[x := 1][y := 2] >

→ < [E‖E‖E], σ[x := 1][y := 2][z := 3] >

is a computation of [x := 1‖y := 2‖z := 3] starting in σ.
Recall that the empty program E denotes termination. For example,

[E‖y := 2‖z := 3] denotes a parallel program where the first component
has terminated. We wish to express the idea that a disjoint parallel pro-
gram S ≡ [S1‖. . .‖Sn] terminates if and only if all its components S1, . . ., Sn

terminate. To this end we identify

[E‖. . .‖E] ≡ E.

This identification allows us to maintain the definition of a terminating com-
putation given in Definition 3.1. For example, the final configuration in the
above computation is the terminating configuration

< E, σ[x := 1][y := 2][z := 3] > .

By inspection of the above transition rules, we obtain

Lemma 7.1. (Absence of Blocking) Every configuration < S, σ > with
S 6≡ E and a proper state σ has a successor configuration in the transition
relation → .

Thus when started in a state σ a disjoint parallel program S ≡ [S1‖. . .‖Sn]
terminates or diverges. Therefore we introduce two types of input/output
semantics for disjoint programs in just the same way as for while programs.
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Definition 7.1. For a disjoint parallel program S and a proper state σ

(i) the partial correctness semantics is a mapping

M[[S]] : Σ →P(Σ)

with
M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >}

(ii) and the total correctness semantics is a mapping

Mtot [[S]] : Σ →P(Σ ∪ {⊥})

with

Mtot [[S]](σ) = M[[S]](σ) ∪ {⊥ | S can diverge from σ}.

Recall that ⊥ is the error state standing for divergence. ⊓⊔

Determinism

Unlike while programs, disjoint parallel programs can generate more than
one computation starting in a given initial state. Thus determinism in the
sense of the Determinism Lemma 3.1 does not hold. However, we can prove
that all computations of a disjoint parallel program starting in the same
initial state produce the same output. Thus a weaker form of determinism
holds here, in that for every disjoint parallel program S and proper state
σ, Mtot [[S]](σ) has exactly one element, either a proper state or the error
state ⊥. This turns out to be a simple corollary to some results concerning
properties of abstract reduction systems.

Definition 7.2. A reduction system is a pair (A, → ) where A is a set and
→ is a binary relation on A; that is, → ⊆ A × A. If a → b holds, we say
that a can be replaced by b. Let →∗ denote the transitive reflexive closure
of → .

We say that → satisfies the diamond property if for all a, b, c ∈ A with
b 6= c

a
ւ ց

b c

implies that for some d ∈ A
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b c
ց ւ

d.

→ is called confluent if for all a, b, c ∈ A

a
∗ւ ց∗
b c

implies that for some d ∈ A

b c
∗ց ւ∗

d.
⊓⊔

The following lemma due to Newman [1942] is of importance to us.

Lemma 7.2. (Confluence) For all reduction systems (A, → ) the following
holds: if a relation → satisfies the diamond property then it is confluent.

Proof. Suppose that → satisfies the diamond property. Let →n stand for
the n-fold composition of → . A straightforward proof by induction on n ≥ 0
shows that a → b and a →n c implies that for some i ≤ n and some d ∈ A,
b →i d and c →ǫ d. Here c →ǫ d iff c → d or c = d. Thus a → b and a →∗ c
implies that for some d ∈ A, b →∗ d and c →∗ d.

This implies by induction on n ≥ 0 that if a →∗ b and a →n c then for
some d ∈ A we have b →∗ d and c →∗ d. This proves confluence. ⊓⊔

To deal with infinite sequences, we need the following lemma.

Lemma 7.3. (Infinity) Consider a reduction system (A, → ) where → sat-
isfies the diamond property and elements a, b, c ∈ A with a → b, a → c and
b 6= c. If there exists an infinite sequence a → b → . . . passing through b then
there exists also an infinite sequence a → c → . . . passing through c.

Proof. Consider an infinite sequence a0 → a1 → . . . where a0 = a and a1 = b.

Case 1. For some i ≥ 0, c →∗ ai.
Then a → c →∗ ai → . . . is the desired sequence.

Case 2. For no i ≥ 0, c →∗ ai.
We construct by induction on i an infinite sequence c0 → c1 → . . . such

that c0 = c and for all i ≥ 0 ai → ci. c0 is already correctly defined. For i = 1
note that a0 → a1, a0 → c0 and a1 6= c0. Thus by the diamond property there
exists a c1 such that a1 → c1 and c0 → c1.

Consider now the induction step. We have ai → ai+1 and ai → ci for some
i > 0. Also, since c →∗ ci, by the assumption ci 6= ai+1. Again by the diamond
property for some ci+1, ai+1 → ci+1 and ci → ci+1. ⊓⊔
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Definition 7.3. Let (A, → ) be a reduction system and a ∈ A. An element
b ∈ A is → -maximal if there is no c with b → c. We define now

yield(a) = {b | a →∗ b and b is → -maximal}
∪ {⊥ | there exists an infinite sequence a → a1 → . . .}

⊓⊔

Lemma 7.4. (Yield) Let (A, → ) be a reduction system where → satisfies
the diamond property. Then for every a, yield(a) has exactly one element.

Proof. Suppose that for some → -maximal b and c, a →∗ b and a →∗ c. By
Confluence Lemma 7.2, there is some d ∈ A with b →∗ d and c →∗ d. By the
→ -maximality of b and c, both b = d and c = d; thus b = c.

Thus the set {b | a →∗ b, b is → -maximal} has at most one element. Sup-
pose it is empty. Then yield(a) = {⊥}.

Suppose now that it has exactly one element, say b. Assume by contradic-
tion that there exists an infinite sequence a → a1 → . . .. Consider a sequence
b0 → b1 → . . . → bk where b0 = a and bk = b. Then k > 0. Let b0 → . . . → bℓ

be the longest prefix of b0 → . . . → bk which is an initial fragment of an infi-
nite sequence a → c1 → c2 → . . .. Then ℓ is well defined, bℓ = cℓ and ℓ < k,
since bk is → -maximal. Thus bℓ → bℓ+1 and bℓ → cℓ+1. By the definition of
ℓ, bℓ+1 6= cℓ+1. By the Infinity Lemma 7.3 there exists an infinite sequence
bℓ → bℓ+1 → . . .. This contradicts the choice of ℓ. ⊓⊔

To apply the Yield Lemma 7.4 to the case of disjoint parallel programs,
we need the following lemma.

Lemma 7.5. (Diamond) Let S be a disjoint parallel program and σ a proper
state. Whenever

< S, σ >
ւ ց

< S1, σ1 >6=< S2, σ2 >,

then for some configuration < T, τ >

< S1, σ1 > < S2, σ2 >
ց ւ

< T, τ >.

Proof. By the Determinism Lemma 3.1 and the interleaving transition rule
(viii), the program S is of the form [T1‖. . .‖Tn] where T1, . . ., Tn are pairwise
disjoint while programs, and S1 and S2 result from S by transitions of two
of these while programs, some Ti and Tj , with i 6= j. More precisely, for
some while programs T ′

i and T ′
j
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S1 = [T1‖. . .‖T
′
i‖. . .‖Tn],

S2 = [T1‖. . .‖T
′
j‖. . .‖Tn],

< Ti, σ > → < T ′
i , σ1 >,

< Tj , σ > → < T ′
j , σ2 > .

Define T and τ as follows:

T = [T ′
1‖. . .‖T

′
n],

where for k ∈ {1, . . . , n} with k 6= i and k 6= j

T ′
k = Tk

and for any variable u

τ(u) =







σ1(u) if u ∈ change(Ti),
σ2(u) if u ∈ change(Tj),
σ(u) otherwise.

By disjointness of Ti and Tj , the state τ is well defined. Using the Change
and Access Lemma 3.4 it is easy to check that both < S1, σ1 > → < T, τ >
and < S2, σ2 > → < T, τ >. ⊓⊔

As an immediate corollary we obtain the desired result.

Lemma 7.6. (Determinism) For every disjoint parallel program S and
proper state σ, Mtot [[S]](σ) has exactly one element.

Proof. By Lemmata 7.4 and 7.5 and observing that for every proper state
σ, Mtot [[S]](σ) = yield(< S, σ >). ⊓⊔

Sequentialization

The Determinism Lemma helps us provide a quick proof that disjoint paral-
lelism reduces to sequential composition. In Section 7.3 this reduction enables
us to state a first, very simple proof rule for disjoint parallelism. To relate
the computations of sequential and parallel programs, we use the following
general notion of equivalence.

Definition 7.4. Two computations are input/output equivalent, or simply
i/o equivalent, if they start in the same state and are either both infinite
or both finite and then yield the same final state. In later chapters we also
consider error states such as fail or ∆ among the final states. ⊓⊔
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Lemma 7.7. (Sequentialization) Let S1, . . ., Sn be pairwise disjoint while
programs. Then

M[[[S1‖. . .‖Sn]]] = M[[S1; . . .; Sn]],

and
Mtot [[[S1‖. . .‖Sn]]] = Mtot [[S1; . . .; Sn]].

Proof. We call a computation of [S1‖. . .‖Sn] sequentialized if the components
S1, . . ., Sn are activated in a sequential order: first execute exclusively S1,
then, in case of termination of S1, execute exclusively S2, and so forth.

We claim that every computation of S1; . . .; Sn is i/o equivalent to a
sequentialized computation of [S1‖. . .‖Sn].

This claim follows immediately from the observation that the computa-
tions of S1; . . .; Sn are in a one-to-one correspondence with the sequential-
ized computations of [S1‖. . .‖Sn]. Indeed, by replacing in a computation of
S1; . . .; Sn each configuration of the form

< T ; Sk+1; . . .; Sn, τ >

by
< [E‖. . .‖E‖T‖Sk+1‖. . .‖Sn], τ >

we obtain a sequentialized computation of [S1‖. . .‖Sn]. Conversely, in a se-
quentialized computation of [S1‖. . .‖Sn] each configuration is of the latter
form, so by applying to such a computation the above replacement operation
in the reverse direction, we obtain a computation of S1; . . .; Sn.

This claim implies that for every state σ

Mtot [[S1; . . .; Sn]](σ) ⊆Mtot [[[S1‖. . .‖Sn]]](σ).

By the Determinism Lemmata 3.1 and 7.6, both sides of the above inclusion
have exactly one element. Thus in fact equality holds. This also implies

M[[S1; . . .; Sn]](σ) = M[[[S1‖. . .‖Sn]]](σ)

and completes the proof of the lemma. ⊓⊔

7.3 Verification

Partial and total correctness of disjoint parallel programs S ≡ [S1‖. . .‖Sn]
are defined as for while programs. Thus for partial correctness we have

|= {p} S {q} iff M[[S]]([[p]]) ⊆ [[q]]

and for total correctness
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|=tot {p} S {q} iff Mtot [[S]]([[p]]) ⊆ [[q]].

Parallel Composition

The Sequentialization Lemma 7.7 suggests the following proof rule for disjoint
parallel programs.

RULE 23: SEQUENTIALIZATION

{p} S1; . . .; Sn {q}

{p} [S1‖. . .‖Sn] {q}

By the Sequentialization Lemma 7.7 this rule is sound for both partial
and total correctness. Thus when added to the previous proof systems PW
or TW for partial or total correctness of while programs, it yields a sound
proof system for partial or total correctness of disjoint parallel programs. For
a very simple application let us look at the following example.

Example 7.2. We wish to show

|=tot {x = y} [x := x + 1‖y := y + 1] {x = y};

that is, if x and y have identical values initially, the same is true upon ter-
mination of the parallel program. By the sequentialization rule it suffices to
show

|=tot {x = y} x := x + 1; y := y + 1 {x = y},

which is an easy exercise in the proof system TW of Chapter 3. ⊓⊔

Though simple, the sequentialization rule has an important methodolog-
ical drawback. Proving its premise amounts —by the composition rule— to
proving

{p} S1 {r1}, . . ., {ri−1} Si {ri}, . . ., {rn−1} Sn {q}

for appropriate assertions r1, . . ., rn−1. Thus the pre- and post-assertions of
different components of [S1‖. . .‖Sn] must fit exactly. This does not reflect the
idea of disjoint parallelism that S1, . . ., Sn are independent programs.

What we would like is a proof rule where the input/output specification
of [S1‖. . .‖Sn] is simply the conjunction of the input/output specifications of
its components S1, . . ., Sn. This aim is achieved by the following proof rule
for disjoint parallel programs proposed in Hoare [1972].
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RULE 24: DISJOINT PARALLELISM

{pi} Si {qi}, i ∈ {1, . . . , n}

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

where free(pi, qi) ∩ change(Sj) = ∅ for i 6= j.

The premises of this rule are to be proven in the proof systems PW or
TW for while programs. Depending on whether we choose PW or TW, the
conclusion of the rule holds in the sense of partial or total correctness, re-
spectively.

This proof rule links parallel composition of programs with logical con-
junction of the corresponding pre- and postconditions and also sets the basic
pattern for the more complicated proof rules needed to deal with shared vari-
ables and synchronization in Chapters 8 and 9. In the present case of disjoint
parallel programs the proof rule allows us to reason compositionally about
the input/output behavior of disjoint parallel programs: once we know the
pre- and postconditions of the component programs we can deduce that the
logical conjunction of these conditions yields the pre- and postcondition of
the parallel program.

Requiring disjointness of the pre- and postconditions and the component
programs in the disjoint parallelism rule is necessary.

Without it we could, for example, derive from the true formulas

{y = 1} x := 0 {y = 1} and {true} y := 0 {true}

the conclusion
{y = 1} [x := 0‖y := 0] {y = 1},

which is of course wrong.
However, due to this restriction the disjoint parallelism rule is weaker than

the sequentialization rule. For example, one can show that the correctness
formula

{x = y} [x := x + 1‖y := y + 1] {x = y}

of Example 7.2 cannot be proved using the disjoint parallelism rule (see Ex-
ercise 7.9). Intuitively, we cannot express in a single assertion pi or qi any
relationship between variables changed in different components, such as the
relationship x = y. But let us see in more detail where a possible proof breaks
down.

Clearly, we can use a fresh variable z to prove

{x = z} x := x + 1 {x = z + 1}

and
{y = z} y := y + 1 {y = z + 1}.



256 7 Disjoint Parallel Programs

Thus by the disjoint parallelism rule we obtain

{x = z ∧ y = z} [x := x + 1‖y := y + 1] {x = z + 1 ∧ y = z + 1}.

Now the consequence rule yields

{x = z ∧ y = z} [x := x + 1‖y := y + 1] {x = y}.

But we cannot simply replace the preassertion x = z ∧ y = z by x = y
because the implication

x = y → x = z ∧ y = z

does not hold. On the other hand, we have

{x = y} z := x {x = z ∧ y = z};

so by the composition rule

{x = y} z := x; [x := x + 1‖y := y + 1] {x = y}. (7.1)

To complete the proof we would like to drop the assignment z := x. But how
might we justify this step?

Auxiliary Variables

What is needed here is a new proof rule allowing us to delete assignments to
so-called auxiliary variables.

The general approach thus consists of extending the program by the assign-
ments to auxiliary variables, proving the correctness of the extended program
and then deleting the added assignments. Auxiliary variables should neither
influence the control flow nor the data flow of the program, but only record
some additional information about the program execution. The following def-
inition identifies sets of auxiliary variables in an extended program.

Definition 7.5. Let A be a set of simple variables in a program S. We call
A a set of auxiliary variables of S if each variable from A occurs in S only in
assignments of the form z := t with z ∈ A. ⊓⊔

Since auxiliary variables do not appear in Boolean expressions, they cannot
influence the control flow in S, and since they are not used in assignments to
variables outside of A, auxiliary variables cannot influence the data flow in
S. As an example, consider the program

S ≡ z := x; [x := x + 1‖y := y + 1].
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Then
∅, {y}, {z}, {x, z}, {y, z}, {x, y, z}

are all sets of auxiliary variables of S.
Now we can state the announced proof rule which was first introduced in

Owicki and Gries [1976a].

RULE 25: AUXILIARY VARIABLES

{p} S {q}

{p} S0 {q}

where for some set of auxiliary variables A of S with free(q) ∩ A = ∅, the
program S0 results from S by deleting all assignments to variables in A.

This deletion process can result in incomplete programs. For example,
taking A = {y} and

S ≡ z := x; [x := x + 1‖y := y + 1],

the literal deletion of the assignment y := y + 1 would yield

z := x; [x := x + 1‖ • ]

with a “hole” • in the second component. By convention, we fill in such
“holes” by skip. Thus in the above example we obtain

S′ ≡ z := x; [x := x + 1‖skip].

Like the disjoint parallelism rule, the auxiliary variables rule is appropriate
for both partial and total correctness.

Example 7.3. As an application of the auxiliary variables rule we can now
complete the proof of our running example. We have already proved the
correctness formula (7.1); that is,

{x = y} z := x; [x := x + 1‖y := y + 1] {x = y}

with the rule of disjoint parallelism. Using the auxiliary variables rule we can
delete the assignment to z and obtain

{x = y} [x := x + 1‖y := y + 1] {x = y},

the desired correctness formula.
In this proof the auxiliary variable z served to link the values of the pro-

gram variables x and y. In general, auxiliary variables serve to record ad-
ditional information about the course of computation in a program that is
not directly expressible in terms of the program variables. This additional
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information then makes possible the correctness proof. In the next chapter
we explain, in the setting of general parallelism, how auxiliary variables can
be introduced in a systematic way. ⊓⊔

Summarizing, for proofs of partial correctness of disjoint parallel programs
we use the following proof system PP.

PROOF SYSTEM PP :
This system consists of the group of axioms
and rules 1–6, 24, 25 and A2–A6.

For proofs of total correctness of disjoint parallel programs we use the
following proof system TP.

PROOF SYSTEM TP :
This system consists of the group of axioms
and rules 1–5, 7, 24, 25 and A3–A6.

Proof outlines for partial and total correctness of parallel programs are
generated in a straightforward manner by the formation axioms and rules
given for while programs together with the following formation rule:

(ix)
{pi} S∗

i {qi}, i ∈ {1, . . . , n}

{
∧n

i=1 pi} [{p1} S∗
1 {q1}‖. . .‖{pn} S∗

n {qn}] {
∧n

i=1 qi}
.

Whether some variables are used as auxiliary variables is not visible from
proof outlines; it has to be stated separately.

Example 7.4. The following proof outline records the proof of the correct-
ness formula (7.1) in the proof systems PP and TP:

{x = y}
z := x;
{x = z ∧ y = z}
[ {x = z} x := x + 1 {x = z + 1}
‖{y = z} y := y + 1 {y = z + 1}]
{x = z + 1 ∧ y = z + 1}
{x = y}.

Here z is just a normal program variable. If one wants to use it as an
auxiliary variable, the corresponding application of Rule 17 has to be stated
separately as in Example 7.3. ⊓⊔
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Soundness

We finish this section by proving soundness of the systems PP and TP. To
this end we prove soundness of the new proof rules 24 and 25.

Lemma 7.8. (Disjoint Parallelism) The disjoint parallelism rule (rule 24)
is sound for partial and total correctness of disjoint parallel programs.

Proof. Suppose the premises of the disjoint parallelism rule are true in the
sense of partial correctness for some pis, qis and Sis, i ∈ {1, . . . , n} such that
free(pi, qi) ∩ change(Sj) = ∅ for i 6= j.

By the truth of the invariance axiom (Axiom A2 —see Theorem 3.7)

|= {pi} Sj {pi} (7.2)

and
|= {qi} Sj {qi} (7.3)

for i, j ∈ {1, . . . , n} such that i 6= j. By the soundness of the conjunction
rule (Rule A4 —see Theorem 3.7), (7.2), (7.3) and the assumed truth of the
premises of the disjoint parallelism rule,

|= {
∧n

i=1 pi} S1 {q1 ∧
∧n

i=2 pi},
|= {q1 ∧

∧n

i=2 pi} S2 {q1 ∧ q2 ∧
∧n

i=3 pi},
. . .

|= {
∧n−1

i=1 qi ∧ pn} Sn {
∧n

i=1 qi}.

By the soundness of the composition rule

|= {
∧n

i=1 pi} S1; . . .; Sn {
∧n

i=1 qi};

so by the soundness of the sequentialization rule 23

|= {
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}.

An analogous proof using the invariance rule A6 instead of the invariance
axiom takes care of total correctness. ⊓⊔

To prove soundness of the rule of auxiliary variables, we use the following
lemma which allows us to insert skip statements into any disjoint parallel
program without changing its semantics.

Lemma 7.9. (Stuttering) Consider a disjoint parallel program S. Let S∗

result from S by replacing an occurrence of a substatement T in S by
“skip; T” or “T ; skip”. Then

M[[S]] = M[[S∗]]

and
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Mtot [[S]] = Mtot [[S
∗]].

Proof. See Exercise 7.4. ⊓⊔

The name of this lemma is motivated by the fact that after inserting some
skip statement into a disjoint parallel program we obtain a program in whose
computations certain states are repeated.

Lemma 7.10. (Auxiliary Variables) The auxiliary variables rule (rule 25)
is sound for partial and total correctness of disjoint parallel programs.

Proof. Let A be a set of simple variables and S a disjoint parallel program.
If A ∩ var(S) is a set of auxiliary variables of S, then we say that A agrees
with S. We then denote the program obtained from S by deleting from it
all the assignments to the variables of A by SA, and the program obtained
from S by replacing by skip all the assignments to the variables of A by
S[A := skip].

Suppose now that A agrees with S. Then the Boolean expressions within
S and the assignments within S to the variables outside A do not contain
any variables from A. Thus, if

< S[A := skip], σ > → < S′
1, σ

′
1 > → . . . → < S′

i, σ
′
i > → . . . (7.4)

is a computation of S[A := skip] starting in σ, then the corresponding com-
putation of S starting in σ

< S, σ > → < S1, σ1 > → . . . → < Si, σi > → . . . (7.5)

is such that for all i

A agrees with Si, S′
i ≡ Si[A := skip], σ′

i[V ar − A] = σi[V ar − A]. (7.6)

Conversely, if (7.5) is a computation of S starting in σ, then the corresponding
computation of S[A := skip] starting in σ is of the form (7.4) where (7.6)
holds.

Thus, using the mod notation introduced in Section 2.3,

M[[S]](σ) = M[[S[A := skip]]](σ) mod A

and
Mtot [[S]](σ) = Mtot [[S[A := skip]]](σ) mod A.

Note that S[A := skip] can be obtained from SA by inserting some skip
statements. Thus, by the Stuttering Lemma 7.9,

M[[SA]](σ) = M[[S[A := skip]]](σ)

and
Mtot [[SA]](σ) = Mtot [[S[A := skip]]](σ).
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Consequently,
M[[S]](σ) = M[[SA]](σ) mod A (7.7)

and
Mtot [[S]](σ) = Mtot [[SA]](σ) mod A. (7.8)

By (7.7) for any assertion p

M[[S]]([[p]]) = M[[SA]]([[p]]) mod A.

Thus, by Lemma 2.3(ii), for any assertion q such that free(q) ∩ A = ∅

M[[S]]([[p]]) ⊆ [[q]] iff M[[SA]]([[p]]) ⊆ [[q]].

This proves the soundness of the auxiliary variables rule for partial correct-
ness. The case of total correctness is handled analogously using (7.8) instead
of (7.7). ⊓⊔

Corollary 7.1. (Soundness of PP and TP)

(i) The proof system PP is sound for partial correctness of disjoint parallel
programs.

(ii) The proof system TP is sound for total correctness of disjoint parallel
programs.

Proof. The proofs of truth and soundness of the other axioms and proof rules
of PP and TP remain valid for disjoint parallel programs. These proofs rely
on the Input/Output Lemma 3.3 and the Change and Access Lemma 3.4,
which also hold for disjoint parallel programs (see Exercises 7.1 and 7.2). ⊓⊔

7.4 Case Study: Find Positive Element

We study here a problem treated in Owicki and Gries [1976a]. Consider an
integer array a and a constant N ≥ 1. The task is to write a program FIND
that finds the smallest index k ∈ {1, . . ., N} with

a[k] > 0

if such an element of a exists; otherwise the dummy value k = N + 1 should
be returned.

Formally, the program FIND should satisfy the input/output specification

{true}
FIND (7.9)
{1 ≤ k ≤ N + 1 ∧ ∀(1 ≤ l < k) : a[l] ≤ 0 ∧ (k ≤ N → a[k] > 0)}
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in the sense of total correctness. Clearly, we require a 6∈ change(FIND).
To speed up the computation, FIND is split into two components which

are executed in parallel: the first component S1 searches for an odd index
k and the second component S2 for an even one. The component S1 uses a
variable i for the (odd) index currently being checked and a variable oddtop
to mark the end of the search:

S1 ≡ while i < oddtop do
if a[i] > 0 then oddtop := i

else i := i + 2 fi
od.

The component S2 uses variables j and eventop for analogous purposes:

S2 ≡ while j < eventop do
if a[j] > 0 then eventop := j

else j := j + 2 fi
od.

The parallel program FIND is then given by

FIND ≡ i := 1; j := 2; oddtop := N + 1; eventop := N + 1;

[S1‖S2];

k := min(oddtop, eventop).

This is a version of the program FINDPOS studied in Owicki and Gries
[1976a] where the loop conditions have been simplified to achieve disjoint
parallelism. The original, more efficient, program FINDPOS is discussed in
Section 8.6.

To prove that FIND satisfies its input/output specification (7.9), we first
deal with its components. The first component S1 searching for an odd index
stores its result in the variable oddtop. Thus it should satisfy

{i = 1 ∧ oddtop = N + 1} S1 {q1} (7.10)

in the sense of total correctness where q1 is the following adaptation of the
postcondition of (7.9):

q1 ≡ 1 ≤ oddtop ≤ N + 1
∧ ∀l : (odd(l) ∧ 1 ≤ l < oddtop → a[l] ≤ 0)
∧ (oddtop ≤ N → a[oddtop] > 0).

Similarly, the second component S2 should satisfy

{j = 2 ∧ eventop = N + 1} S2 {q2}, (7.11)

where
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q2 ≡ 2 ≤ eventop ≤ N + 1
∧ ∀l : (even(l) ∧ 1 ≤ l < eventop → a[l] ≤ 0)
∧ (eventop ≤ N → a[eventop] > 0).

The notation odd(l) and even(l) expresses that l is odd or even, respectively.
We prove (7.10) and (7.11) using the proof system TW for total correctness

of while programs. We start with (7.10). As usual, the main task is to find
an appropriate invariant p1 and a bound function t1 for the loop in S1.

As a loop invariant p1 we choose a slight generalization of the postcondition
q1 which takes into account the loop variable i of S1:

p1 ≡ 1 ≤ oddtop ≤ N + 1 ∧ odd(i) ∧ 1 ≤ i ≤ oddtop + 1
∧ ∀l : (odd(l) ∧ 1 ≤ l < i → a[l] ≤ 0)
∧ (oddtop ≤ N → a[oddtop] > 0).

As a bound function t1, we choose

t1 ≡ oddtop + 1 − i.

Note that the invariant p1 ensures that t1 ≥ 0 holds.
We verify our choices by exhibiting a proof outline for the total correctness

of S1:

{inv : p1}{bd : t1}
while i < oddtop do

{p1 ∧ i < oddtop}
if a[i] > 0 then {p1 ∧ i < oddtop ∧ a[i] > 0}

{ 1 ≤ i ≤ N + 1 ∧ odd(i) ∧ 1 ≤ i ≤ i + 1
∧ ∀l : (odd(l) ∧ 1 ≤ l < i → a[l] ≤ 0)
∧ (i ≤ N → a[i] > 0)}

oddtop := i
{p1}

else {p1 ∧ i < oddtop ∧ a[i] ≤ 0}
{ 1 ≤ oddtop ≤ N + 1 ∧ odd(i + 2)

∧ 1 ≤ i + 2 ≤ oddtop + 1
∧ ∀l : (odd(l) ∧ 1 ≤ l < i + 2 → a[l] ≤ 0)
∧ (oddtop ≤ N → a[oddtop] > 0)}

i := i + 2
{p1}

fi
{p1}

od
{p1 ∧ oddtop ≤ i}
{q1}.

It is easy to see that in this outline all pairs of subsequent assertions form valid
implications as required by the consequence rule. Also, the bound function
t1 decreases with each iteration through the loop.
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For the second component S2 we choose of course a similar invariant p2

and bound function t2:

p2 ≡ 2 ≤ eventop ≤ N + 1 ∧ even(j) ∧ j ≤ eventop + 1
∧ ∀l : (even(l) ∧ 1 ≤ l < j → a[l] ≤ 0)
∧ (eventop ≤ N → a[eventop] > 0),

and
t2 ≡ eventop + 1 − j.

The verification of (7.11) with p2 and t2 is symmetric to (7.10) and is omitted.
We can now apply the rule of disjoint parallelism to (7.10) and (7.11)

because the corresponding disjointness conditions are satisfied. We obtain

{p1 ∧ p2} (7.12)
[S1‖S2]
{q1 ∧ q2}.

To complete the correctness proof, we look at the following proof outlines

{true} (7.13)
i := 1; j := 2; oddtop := N + 1; eventop := N + 1;
{p1 ∧ p2}

and

{q1 ∧ q2} (7.14)
{ 1 ≤ min(oddtop, eventop) ≤ N + 1

∧ ∀(1 ≤ l < min(oddtop, eventop)) : a[l] ≤ 0
∧ (min(oddtop, eventop) ≤ N → a[min(oddtop, eventop)] > 0)}

k := min(oddtop, eventop)
{1 ≤ k ≤ N + 1 ∧ ∀(1 ≤ l < k) : a[l] ≤ 0 ∧ (k ≤ N → a[k] > 0)}.

Applying the composition rule to (7.12), (7.13) and (7.14) yields the desired
formula (7.9) about FIND.

7.5 Exercises

7.1. Prove the Input/Output Lemma 3.3 for disjoint parallel programs.

7.2. Prove the Change and Access Lemma 3.4 for disjoint parallel programs.

7.3. Let x and y be two distinct integer variables and let s and t be integer
expressions containing some free variables. State a condition on s and t such
that

M[[x := s; y := t]] = M[[y := t; x := s]]

holds.
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7.4. Prove the Stuttering Lemma 7.9.

7.5. Consider a computation ξ of a disjoint parallel program S≡ [S1‖. . .‖Sn].
Every program occurring in a configuration of ξ is the parallel composition of
n components. To distinguish among the transitions of different components,
we attach labels to the transition arrow → and write

< U, σ >
i
→ < V, τ >

if i ∈ {1, . . . , n} and < U, σ > → < V, τ > is a transition in ξ caused by

the activation of the ith component of U . Thus the labeled arrows
i
→ are

relations between configurations which are included in the overall transition
relation → .

Recall from Section 2.1 that for arbitrary binary relations → 1 and → 2

the relational composition → 1 ◦ → 2 is defined as follows:

a → 1 ◦ → 2b if for some c, a → 1c and c → 2b.

We say that → 1 and → 2 commute if

→ 1 ◦ → 2 = → 2 ◦ → 1.

Prove that for i, j ∈ {1, . . . , n} the transition relations
i
→ and

j
→ commute.

Hint. Use the Change and Access Lemma 3.4.

7.6. Prove that

Mtot [[[S1‖. . .‖Sn]]] = Mtot [[S1; . . .; Sn]]

using Exercise 7.5.

7.7. Call a program S determinate if for all proper states σ, Mtot [[S]](σ) is a
singleton.

Prove that if S1, S2 are determinate and B is a Boolean expression, then

(i) S1; S2 is determinate,
(ii) if B then S1 else S2 fi is determinate,
(iii) while B do S1 od is determinate.

7.8. Provide an alternative proof of the Determinism Lemma 7.6 using Ex-
ercises 7.6 and 7.7.

7.9. Show that the correctness formula

{x = y} [x := x + 1‖y := y + 1] {x = y}

cannot be proved in the proof systems PW +rule 24 and TW +rule 24.
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7.10. Prove the correctness formula

{x = y} [x := x + 1‖y := y + 1] {x = y}

in the proof system PW +rule A5 +rule 24.

7.6 Bibliographic Remarks

The symbol ‖ denoting parallel composition is due to Hoare [1972]. The in-
terleaving semantics presented here is a widely used approach to modeling
parallelism. Alternatives are the semantics of maximal parallelism of Salwicki
and Müldner [1981] and semantics based on partial orders among the config-
urations in computations —see, for example, Best [1996] and Fokkinga, Poel
and Zwiers [1993].

Abstract reduction systems as used in Section 7.2 are extensively covered in
Terese [2003]. The sequentialization rule (rule 23) and the disjoint parallelism
rule (rule 24) were first discussed in Hoare [1975], although on the basis of
an informal semantics only. The proof of the Sequentialization Lemma 7.7 is
based on the fact that transitions of disjoint programs commute, see Exercises
7.5 and 7.6. Semantic commutativity of syntactically nondisjoint statements
was studied by Best and Lengauer [1989].

The need for auxiliary variables in correctness proofs was first realized
by Clint [1973]. A critique of auxiliary variables ranging over an unbounded
domain of values can be found in Clarke [1980]. The name of the Stuttering
Lemma is motivated by the considerations of Lamport [1983].

The program FIND studied in Section 7.4 is a disjoint parallelism version of
the program FINDPOS due to Rosen [1974]. Its correctness proof is a variation
of the corresponding proof of FINDPOS in Owicki and Gries [1976a].
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D ISJOINT PARALLELISM IS a rather restricted form of concur-

rency. In applications, concurrently operating components often

share resources, such as a common database, a line printer or a data bus.

Sharing is necessary when resources are too costly to have one copy for each

component, as in the case of a large database. Sharing is also useful to estab-

lish communication between different components, as in the case of a data

bus. This form of concurrency can be modeled by means of parallel programs

with shared variables, variables that can be changed and read by several

components.

Design and verification of parallel programs with shared variables are much

more demanding than those of disjoint parallel programs. The reason is that

the individual components of such a parallel program can interfere with each

267
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other by changing the shared variables. To restrict the points of interference,

we consider so-called atomic regions whose execution cannot be interrupted

by other components.

After illustrating the problems with shared variables in Section 8.1 we

introduce the syntax of this class of programs in Section 8.2. In Section 8.3

we define the semantics of these programs.

Next, we study the verification of parallel programs with shared variables.

We follow here the approach of Owicki and Gries [1976a]. In Section 8.4

we deal with partial correctness. The proof rule for parallelism with shared

variables includes a test of interference freedom of proof outlines for the

component programs. Intuitively, interference freedom means that none of

the proof outlines invalidates the (intermediate) assertions in any other proof

outline.

In Section 8.5 we deal with total correctness. To prove termination of

parallel programs with shared variables, we have to strengthen the notion of

a proof outline for the total correctness of a component program and extend

the test of interference freedom appropriately.

As a case study we prove in Section 8.6 the correctness of a more efficient

version of the program FIND of Chapter 7 which uses shared variables.

In Section 8.7 we consider two program transformations that allow us to

introduce in parallel programs more points of interference without changing

the correctness properties. We demonstrate the use of these transformations

in Section 8.8, where we prove as a case study partial correctness of the zero

search program ZERO-3 from Chapter 1.
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8.1 Access to Shared Variables

The input/output behavior of a disjoint parallel program can be determined
by looking only at the input/output behavior of its components. This is no
longer the case when shared variables are allowed. Here the program execu-
tions have to be considered.

Example 8.1. Consider the two component programs

S1 ≡ x := x + 2 and S′
1 ≡ x := x + 1; x := x + 1.

In isolation both programs exhibit the same input/output behavior, since
they increase the value of the variable x by 2. However, when executed in
parallel with the component

S2 ≡ x := 0,

S1 and S′
1 behave differently. Indeed, upon termination of

[S1‖S2]

the value of x can be either 0 or 2 depending on whether S1 or S2 is executed
first. On the other hand, upon termination of

[S′
1‖S2]

the value of x can be 0, 1 or 2. The new value 1 is obtained when S2 is
executed between the two assignments of S′

1. ⊓⊔

The informal explanation of these difficulties clarifies that the in-
put/output (i/o) behavior of a parallel program with shared variables criti-
cally depends on the way its components access the shared variables during
its computation. Therefore any attempt at understanding parallelism with
shared variables begins with the understanding of the access to shared vari-
ables. The explanation involves the notion of an atomic action.

In this context, by an action A we mean a statement or a Boolean ex-
pression. An action A within a component Si of a parallel program S ≡
[S1‖. . .‖Sn] with shared variables is called indivisible or atomic if during its
execution the other components Sj (j 6= i) may not change the variables of
A. Thus during the execution of A only A itself may change the variables in
var(A). Computer hardware guarantees that certain actions are atomic.

The computation of each component Si can be thought of as a sequence
of executions of atomic actions: at each instance of time each component is
ready to execute one of its atomic actions. The components proceed asyn-
chronously ; that is, there is no assumption made about the relative speed at
which different components execute their atomic actions.
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The executions of atomic actions within two different components of a par-
allel program with shared variables may overlap provided these actions do
not change each other’s variables. But because of this restriction, their possi-
bly overlapping execution can be modeled by executing them sequentially, in
any order. This explains why asynchronous computations are modeled here
by interleaving.

There still remains the question of what size of atomic actions can be
assumed. We discuss this point in Sections 8.2 and 8.3.

8.2 Syntax

Formally, shared variables are introduced by dropping the disjointness re-
quirement for parallel composition. Atomic regions may appear inside a paral-
lel composition. Syntactically, these are statements enclosed in angle brackets
〈 and 〉.

Thus we first define component programs as programs generated by the
same clauses as those defining while programs in Chapter 3 together with
the following clause for atomic regions:

S ::= 〈S0〉,

where S0 is loop-free and does not contain further atomic regions.
Parallel programs with shared variables (or simply parallel programs) are

generated by the same clauses as those defining while programs together
with the following clause for parallel composition:

S ::= [S1‖. . .‖Sn],

where S1, . . ., Sn are component programs (n > 1). Again, we do not allow
nested parallelism, but we allow parallelism within sequential composition,
conditional statements and while loops.

Intuitively, an execution of [S1‖. . .‖Sn] is obtained by interleaving the
atomic, that is, noninterruptible, steps in the executions of the components
S1, . . ., Sn. By definition,

• Boolean expressions,
• assignments and skip, and
• atomic regions

are all evaluated or executed as atomic steps. The reason why an atomic
region is required to be loop-free, is so its execution is then guaranteed to
terminate; thus atomic steps are certain to terminate. An interleaved execu-
tion of [S1‖. . .‖Sn] terminates if and only if the individual execution of each
component terminates.

For convenience, we identify
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〈A〉 ≡ A

if A is an atomic statement, that is, an assignment or skip. By a normal
subprogram of a program S we mean a subprogram of S not occurring within
any atomic region of S. For example, the assignment x := 0, the atomic
region 〈x := x + 2; z := 1〉 and the program x := 0; 〈x := x + 2; z := 1〉 are
the only normal subprograms of x := 0; 〈x := x + 2; z := 1〉.

As usual, we assume that all considered programs are syntactically correct.
Thus when discussing an atomic region 〈S〉 it is assumed that S is loop-free.

8.3 Semantics

The semantics of parallel programs is defined in the same way as that of
disjoint parallel programs, by using transition axioms and rules (i)–(vii) in-
troduced in Section 3.2 together with transition rule (xvii) introduced in
Section 7.2. So, as in Chapter 7, parallelism is modeled here by means of
interleaving. To complete the definition we still need to define the semantics
of atomic regions. This is achieved by the following transition rule

(xviii)
< S, σ > →∗ < E, τ >

< 〈S〉, σ > → < E, τ >
.

This rule formalizes the intuitive meaning of atomic regions by reducing
each terminating computation of the “body” S of an atomic region 〈S〉 to
a one-step computation of the atomic region. This reduction prevents inter-
ference of other components in a computation of 〈S〉 within the context of a
parallel composition.

As in Section 7.2 the following obvious lemma holds.

Lemma 8.1. (Absence of Blocking) Every configuration < S, σ > with
S 6≡ E and a proper state σ has a successor configuration in the transition
relation → .

This leads us, as in Section 7.2, to two semantics of parallel programs, par-
tial correctness semantics M and total correctness semantics Mtot, defined
as before.

In the informal Section 8.1 we have already indicated that parallel pro-
grams with shared variables can exhibit nondeterminism. Here we state this
fact more precisely.

Lemma 8.2. (Bounded Nondeterminism) Let S be a parallel program
and σ a proper state. Then Mtot [[S]](σ) is either finite or it contains ⊥.
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This lemma stands in sharp contrast to the Determinism Lemma 7.6 for
disjoint parallelism. The proof combines a simple observation on the transi-
tion relation → with a fundamental result about trees due to König [1927]
(see also Knuth [1968,page 381]).

Lemma 8.3. (Finiteness) For every parallel program S and proper state σ,
the configuration < S, σ > has only finitely many successors in the relation
→ .

Proof. The lemma follows immediately from the shape of the transition
axioms and rules (i) – (xviii) defining the transition relation. ⊓⊔

Lemma 8.4. (König’s Lemma) Any finitely branching tree is either finite
or it has an infinite path.

Proof. Consider an infinite, but finitely branching tree T . We construct an
infinite path in T , that is, an infinite sequence

ξ : N0 N1 N2 . . .

of nodes so that, for each i ≥ 0, Ni+1 is a child of Ni. We construct ξ by
induction on i so that every Ni is the root of an infinite subtree of T .

Induction basis : i = 0. As node N0 we take the root of T .

Induction step : i −→ i + 1. By induction hypothesis, Ni is the root of an
infinite subtree of T . Since T is finitely branching, there are only finitely
many children M1, . . .,Mn of Ni. Thus at least one of these children, say Mj ,
is a root of an infinite subtree of T . Then we choose Mj as node Ni+1.
This completes the inductive definition of ξ. ⊓⊔

We now turn to the

Proof of Lemma 8.2. By Lemma 8.3, the set of computation sequences of
S starting in σ can be represented as a finitely branching computation tree.
By König’s Lemma 8.4, this tree is either finite or it contains an infinite path.
Clearly, finiteness of the computation tree implies finiteness of Mtot [[S]](σ),
and by definition an infinite path in the tree means that S can diverge from
σ, thus yielding ⊥ ∈ Mtot [[S]](σ). ⊓⊔

Atomicity

According to the given transition rules, our semantics of parallelism assumes
that Boolean expressions, assignments, skip and atomic regions are evalu-
ated or executed as atomic actions. But is this assumption guaranteed by
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conventional computer hardware? The answer is no. Usually, we may assume
only that the hardware guarantees the atomicity of a single critical reference,
that is, an exclusive read or write access to a single shared variable, either a
simple one or a subscripted one.

For illustration, consider the program

S ≡ [x := y‖y := x].

Under the single reference assumption, executing the assignment x := y re-
quires two atomic variable accesses: first y is read and then x is changed (to
the value of y). Symmetrically, the same holds for y := x. Thus executing S
in a state with x = 1 and y = 2 can result in the following three final states:

(i) x = y = 2,
(ii) x = y = 1,
(iii) x = 2 and y = 1.

Note that (iii) is obtained if both x and y are first read and then changed.
This result is impossible in our semantics of parallelism where the whole
assignment is treated as one atomic action.

Thus, in general, our semantics of parallelism does not model the reality of
conventional hardware. Fortunately, this is not such a severe shortcoming as
it might seem at first sight. The reason is that by using additional variables
every component program can be transformed into an equivalent one where
each atomic action contains exactly one shared variable access. For example,
the program S above can be transformed into

S′ ≡ [AC1 := y; x := AC1‖AC2 := x; y := AC2].

The additional variables ACi represent local accumulators as used in conven-
tional computers to execute assignments. Now our operational semantics of
S′ mirrors exactly its execution on a conventional computer. Indeed, for S′,
the final states (i)–(iii) above are all possible.

Summarizing, in our semantics of parallelism the grain of atomicity was
chosen to yield a simple definition. This definition is not realistic, but for
programs all of whose atomic actions contain at most one shared variable
access, this definition models exactly their execution on conventional com-
puter hardware. Moreover, in correctness proofs of parallel programs it is
most convenient not to be confined to the grain of atomicity as provided by
real computers, but to work with virtual atomicity, freely defined by atomic
regions 〈S0〉. Generally speaking, we can observe the following dichotomy:

• The smaller the grain of atomicity the more realistic the program.
• The larger the grain of atomicity the easier the correctness proof of the

program.

Further elaboration of this observation can be found at the end of Section 8.4
and in Sections 8.7 and 8.8.
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8.4 Verification: Partial Correctness

Component Programs

Partial correctness of component programs is proved by using the rules of the
system PW for the partial correctness of while programs plus the following
rule dealing with atomic regions:

RULE 26: ATOMIC REGION

{p} S {q}

{p} 〈S〉 {q}

This rule is sound for partial (and total) correctness of component programs
because atomicity has no influence on the input/output behavior of individual
component programs.

Proof outlines for partial correctness of component programs are generated
by the formation rules (i)–(vii) given for while programs plus the following
one.

(x)
{p} S∗ {q}

{p} 〈S∗〉 {q}

where as usual S∗ stands for an annotated version of S.

A proof outline {p} S∗ {q} for partial correctness is called standard if
within S∗ every normal subprogram T is preceded by exactly one assertion,
called pre(T ), and there are no further assertions within S∗. In particular,
there are no assertions within atomic regions. The reason for this omission is
because the underlying semantics of parallel programs with shared variables
causes atomic regions to be executed as indivisible actions. This is explained
more fully when we discuss the notion of interference freedom.

For while programs the connection between standard proof outlines and
computations is stated in the Strong Soundness Theorem 3.3. We need here
an analogous result. To this end we use the notation at(T, S) introduced in
Definition 3.7, but with the understanding that T is a normal subprogram of
a component program S. Note that no additional clause dealing with atomic
regions is needed in this definition.

Lemma 8.5. (Strong Soundness for Component Programs) Consider
a component program S with a standard proof outline {p} S∗ {q} for partial
correctness. Suppose

< S, σ > →∗ < R, τ >

holds for a proper state σ satisfying p, a program R and a proper state τ .
Then
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• either R ≡ at(T, S) for some normal subprogram T of S and τ |= pre(T )
• or R ≡ E and τ |= q.

Proof. Removing all brackets 〈 and 〉 from S and the proof outline
{p} S∗ {q} yields a while program S1 with a proof outline {p} S∗

1 {q} for
partial correctness. Inserting appropriate assertions in front of the subpro-
grams of S1 that are nonnormal subprograms of S yields a standard proof
outline {p} S∗∗

1 {q} for partial correctness. By transition rule (xiv) defining
the semantics of atomic regions, for any program R

< S, σ > →∗ < R, τ > iff < S1, σ > →∗ < R1, τ >,

where R1 is obtained from R by removing from it all brackets 〈 and 〉. The
claim now follows by the Strong Soundness Theorem 3.3. ⊓⊔

This shows that the introduction of atomic regions leads to a straight-
forward extension of the proof theory from while programs to component
programs.

No Compositionality of Input/Output Behavior

Much more complicated is the treatment of parallel composition. As already
shown in Example 8.1, the input/output behavior of a parallel program can-
not be determined solely from the input/output behavior of its components.
Let us make this observation more precise by examining correctness formulas
for the programs of Example 8.1.

In isolation the component programs x := x+2 and x := x+1; x := x+1
exhibit the same input/output behavior. Indeed, for all assertions p and q we
have

|= {p} x := x + 2 {q} iff |= {p} x := x + 1; x := x + 1 {q}.

However, the parallel composition with x := 0 leads to a different in-
put/output behavior. On the one hand,

|= {true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

holds but

6|= {true} [x := x + 1; x := x + 1‖x := 0] {x = 0 ∨ x = 2}

since here the final value of x might also be 1.
We can summarize this observation as follows: the input/output behav-

ior of parallel programs with shared variables is not compositional; that is,
there is no proof rule that takes input/output specifications {pi} Si {qi} of
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component programs Si as premises and yields the input/output specification
{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi} for the parallel program as a conclusion un-
der some nontrivial conditions. Recall that this is possible for disjoint parallel
programs —see the sequentialization rule 23.

For parallel programs [S1‖. . .‖Sn] with shared variables we have to in-
vestigate how the input/output behavior is affected by each action in the
computations of the component programs Si.

Parallel Composition: Interference Freedom

To reason about parallel programs with shared variables we follow the ap-
proach of Owicki and Gries [1976a] and consider proof outlines instead of
correctness formulas. By the Strong Soundness for Component Programs
Lemma 8.5, the intermediate assertions of proof outlines provide information
about the course of the computation: whenever the control of a component
program in a given computation reaches a control point annotated by an
assertion, this assertion is true.

Unfortunately, this strong soundness property of proof outlines no longer
holds when the component programs are executed in parallel. Indeed, consider
the proof outlines

{x = 0} x := x + 2 {x = 2}

and
{x = 0} x := 0 {true}

and a computation of the parallel program [x := x + 2‖x := 0] starting in
a state satisfying x = 0. Then the postcondition x = 2 does not necessarily
hold after x := x + 2 has terminated because the assignment x := 0 could
have reset the variable x to 0.

The reason is that the above proof outlines do not take into account a pos-
sible interaction, or as we say, interference, among components. This brings
us to the following important notion of interference freedom due to Owicki
and Gries [1976a].

Definition 8.1. (Interference Freedom: Partial Correctness)

(i) Let S be a component program. Consider a standard proof outline
{p} S∗ {q} for partial correctness and a statement R with the precon-
dition pre(R). We say that R does not interfere with {p} S∗ {q} if

• for all assertions r in {p} S∗ {q} the correctness formula

{r ∧ pre(R)} R {r}

holds in the sense of partial correctness.
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(ii) Let [S1‖. . .‖Sn] be a parallel program. Standard proof outlines
{pi} S∗

i {qi}, i ∈ {1, . . . , n}, for partial correctness are called interfer-
ence free if no normal assignment or atomic region of a program Si

interferes with the proof outline {pj} S∗
j {qj} of another program Sj

where i 6= j. ⊓⊔

Thus interference freedom means that the execution of atomic steps of one
component program never falsifies the assertions used in the proof outline of
any other component program.

With these preparations we can state the following conjunction rule for
general parallel composition.

RULE 27: PARALLELISM WITH SHARED VARIABLES

The standard proof outlines {pi} S∗
i {qi},

i ∈ {1, . . . , n}, are interference free

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

Note that the conclusion in this rule is the same as that in the disjoint
parallelism rule 24. However, its premises are now much more complicated.
Instead of simply checking the correctness formulas {pi} Si {qi} for disjoint-
ness, their proofs as recorded in the standard proof outlines {pi} S∗

i {qi} must
be tested for interference freedom. The restriction to standard proof outlines
reduces the amount of testing to a minimal number of assertions.

The test of interference freedom makes correctness proofs for parallel pro-
grams more difficult than for sequential programs. For example, in the case
of two component programs of length ℓ1 and ℓ2, proving interference freedom
requires proving ℓ1×ℓ2 additional correctness formulas. In practice, however,
most of these formulas are trivially satisfied because they check an assignment
or atomic region R against an assertion that is disjoint from R.

Example 8.2. As a first application of the parallelism with shared variables
rule let us prove partial correctness of the parallel programs considered in
Section 8.1.

(i) First we consider the program [x := x + 2‖x := 0]. The standard proof
outlines

{x = 0} x := x + 2 {x = 2}

and
{true} x := 0 {x = 0}

are obviously correct, but they are not interference free. For instance, the
assertion x = 0 is not preserved under the execution of x := x + 2. Similarly,
x = 2 is not preserved under the execution of x := 0.

However, by weakening the postconditions, we obtain standard proof out-
lines
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{x = 0} x := x + 2 {x = 0 ∨ x = 2}

and
{true} x := 0 {x = 0 ∨ x = 2}

which are interference free. For example, the assignment x := x+2 of the first
proof outline does not interfere with the postcondition of the second proof
outline because

{x = 0 ∧ (x = 0 ∨ x = 2)} x := x + 2 {x = 0 ∨ x = 2}

holds. Thus the parallelism with shared variables rule yields

{x = 0} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}.

(ii) Next we study the program [x := x + 1; x := x + 1‖x := 0]. Consider the
following proof outlines:

{x = 0}
x := x + 1;
{x = 0 ∨ x = 1}
x := x + 1
{true}

and
{true} x := 0 {x = 0 ∨ x = 1 ∨ x = 2}.

To establish their interference freedom seven interference freedom checks need
to be made. All of them obviously hold. This yields by the parallelism with
shared variables rule

{x = 0} [x := x + 1; x := x + 1‖x := 0] {x = 0 ∨ x = 1 ∨ x = 2}.

(iii) Finally, we treat the first component in the parallel program from the
previous example as an atomic region. Then the proof outlines

{x = 0} 〈x := x + 1; x := x + 1〉 {true}

and
{true} x := 0 {x = 0 ∨ x = 2}

are clearly interference free. This proves by the parallelism with shared vari-
ables rule the correctness formula

{x = 0} [〈x := x + 1; x := x + 1〉‖x := 0] {x = 0 ∨ x = 2}.

Thus when executed in parallel with x := 0, the atomic region 〈x := x + 1;
x := x + 1〉 behaves exactly like the single assignment x := x + 2. ⊓⊔
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Auxiliary Variables Needed

However, once a slightly stronger claim about the program from Exam-
ple 8.2(i) is considered, the parallelism with shared variables rule 27 becomes
too weak to reason about partial correctness.

Lemma 8.6. (Incompleteness) The correctness formula

{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2} (8.1)

is not a theorem in the proof system PW + rule 27.

Proof. Suppose by contradiction that this correctness formula can be proved
in the system PW + rule 27. Then, for some interference free proof outlines

{p1} x := x + 2 {q1},

and
{p2} x := 0 {q2},

the implications
true → p1 ∧ p2 (8.2)

and
q1 ∧ q2 → x = 0 ∨ x = 2 (8.3)

hold. Then by (8.2) both p1 and p2 are true.
Thus {true} x := x + 2 {q1} holds, so by the Soundness Theorem 3.1 the

assertion q1[x := x + 2] is true. Since x ranges over all integers,

q1 (8.4)

itself is true. Also, {true} x := 0 {q2} implies by the Soundness Theorem 3.1

q2[x := 0]. (8.5)

Moreover, by interference freedom {true ∧ q2} x := x + 2 {q2} which gives

q2 → q2[x := x + 2]. (8.6)

By induction (8.5) and (8.6) imply

∀x : (x ≥ 0 ∧ even(x) → q2). (8.7)

Now by (8.3) and (8.4) we obtain from (8.7)

∀x : (x ≥ 0 ∧ even(x) → x = 0 ∨ x = 2)

which gives a contradiction. ⊓⊔
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Summarizing, in any interference free proof outline of the above form, the
postcondition q2 of x := 0 would hold for every even x ≥ 0, whereas it should
hold only for x = 0 or x = 2. The reason for this mismatch is that we cannot
express in terms of the variable x the fact that the first component x := x+2
should still be executed.

What is needed here is the rule of auxiliary variables (rule 25) introduced
in Chapter 7.

Example 8.3. We now prove the correctness formula (8.1) using additionally
the rule of auxiliary variables. The proof makes use of an auxiliary Boolean
variable “done” indicating whether the assignment x := x + 2 has been exe-
cuted. This leads us to consider the correctness formula

{true}
done := false; (8.8)
[〈x := x + 2; done := true〉‖x := 0]
{x = 0 ∨ x = 2}.

Since {done} is indeed a set of auxiliary variables of the extended program,
the rule of auxiliary variables allows us to deduce (8.1) whenever (8.8) has
been proved.

To prove (8.8), we consider the following standard proof outlines for the
components of the parallel composition:

{¬done} 〈x := x + 2; done := true〉 {true} (8.9)

and
{true} x := 0 {(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}. (8.10)

Note that the atomic region rule 26 is used in the proof of (8.9).
It is straightforward to check that (8.9) and (8.10) are interference free. To

this purpose four correctness formulas need to be verified. For example, the
proof that the atomic region in (8.9) does not interfere with the postcondition
of (8.10) is as follows:

{(x = 0 ∨ x = 2) ∧ (¬done → x = 0) ∧ ¬done}
{x = 0}
〈x := x + 2; done := true〉
{x = 2 ∧ done}
{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}.

The remaining three cases are in fact trivial. The parallelism with shared
variables rule 27 applied to (8.9) and (8.10) and the consequence rule now
yield

{¬done}
[〈x := x + 2; done := true〉‖x := 0] (8.11)
{x = 0 ∨ x = 2}.
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On the other hand, the correctness formula

{true} done := false {¬done} (8.12)

obviously holds. Thus, applying the composition rule to (8.11) and (8.12)
yields (8.8) as desired. ⊓⊔

The above correctness proof is more complicated than expected. In par-
ticular, the introduction of the auxiliary variable done required some insight
into the execution of the given program. The use of done brings up two
questions: how do we find appropriate auxiliary variables? Is there perhaps
a systematic way of introducing them? The answer is affirmative. Following
the lines of Lamport [1977], one can show that it is sufficient to introduce a
separate program counter for each component of a parallel program. A pro-
gram counter is an auxiliary variable that has a different value in front of
every substatement in a component. It thus mirrors exactly the control flow
in the component. In most applications, however, only partial information
about the control flow is sufficient. This can be represented by a few suitable
auxiliary variables such as the variable done above.

It is interesting to note that the atomicity of 〈x := x + 2; done := true〉
is decisive for the correctness proof in Example 8.3. If the sequence of the two
assignments were interruptable, we would have to consider the proof outlines

{¬done} x := x + 2; {¬done} done := true {true}

and
{true} x := 0 {(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}

which are not interference free. For example, the assignment x := x + 2
interferes with the postcondition of x := 0. The introduction of the atomic
region 〈x := x + 2; done := true〉 is a typical example of virtual atomicity
mentioned in Section 8.3: this atomic region is not a part of the original
program; it appears only in its correctness proof.

Summarizing, to prove partial correctness of parallel programs with shared
variables, we use the following proof system PSV :

PROOF SYSTEM PSV :
This system consists of the group of axioms
and rules 1–6, 25–27 and A2–A6.
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Soundness

We now prove soundness of PSV for partial correctness. Since we have already
noted the soundness of the atomic region rule 26, we concentrate here on the
soundness proofs of the auxiliary variables rule 25 and the parallelism with
shared variables rule 27.

Lemma 8.7. (Auxiliary Variables) The rule of auxiliary variables
(rule 25) is sound for partial (and total) correctness of parallel programs.

Proof. The proof of Lemma 7.10 stating soundness of rule 25 for disjoint
parallel programs does not depend on the assumption of disjoint parallelism.
See also Exercise 8.3. ⊓⊔

To prove the soundness of the parallelism with shared variables rule 27
for partial correctness we first show a stronger property: considering si-
multaneously the interference free standard proof outlines {p1} S∗

1 {q1},
. . .,{pn} S∗

n {qn} yields a valid annotation for the parallel program
[S1‖. . .‖Sn]. More precisely, in a computation of [S1‖. . .‖Sn] starting in a
state satisfying

∧n
i=1 pi, whenever the control in a component Si reaches

a point annotated by an assertion, this assertion is true. This is the strong
soundness property for parallel programs.

Lemma 8.8. (Strong Soundness for Parallel Programs) Let
{pi} S∗

i {qi}, i ∈ {1, . . . , n}, be interference free standard proof outlines for
partial correctness for component programs Si. Suppose that

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖Rn], τ >

for some state σ satisfying
∧n

i=1 pi, some component programs Ri with i ∈
{1, . . . , n} and some state τ . Then for j ∈ {1, . . . , n}

• if Rj ≡ at(T, Sj) for a normal subprogram T of Sj, then τ |= pre(T );
• if Rj ≡ E then τ |= qj.

In particular, whenever

< [S1‖. . .‖Sn], σ > →∗ < E, τ >

then τ |=
∧n

i=1 qi.

Proof. Fix j ∈ {1, . . . , n}. It is easy to show that either Rj ≡ at(T, Sj) for
a normal subprogram T of Sj or Rj ≡ E (see Exercise 8.4). In the first case
let r stand for pre(T ) and in the second case let r stand for qj . We need to
show τ |= r.

The proof is by induction on the length ℓ of the transition sequence

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖Rn], τ > .
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Induction basis : ℓ = 0. Then pj → r and σ = τ ; thus σ |= pj and hence τ |= r.

Induction step : ℓ −→ ℓ + 1. Then for some R′
k and τ ′

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖R
′
k‖. . .‖Rn], τ ′ >

→ < [R1‖. . .‖Rk‖. . .‖Rn], τ >;

that is, the last step in the transition sequence was performed by the kth
component. Thus

< R′
k, τ ′ > → < Rk, τ > .

Two cases naturally arise.

Case 1 j = k.
Then an argument analogous to the one given in the proof of the Strong

Soundness Theorem 3.3 and the Strong Soundness for Component Programs
Lemma 8.5 shows that τ |= r.

Case 2 j 6= k.
By the induction hypothesis τ ′ |= r. If the last step in the computation

consists of an evaluation of a Boolean expression, then τ = τ ′ and conse-
quently τ |= r.

Otherwise the last step in the computation consists of an execution of an
assignment A or an atomic region A. Thus

< A, τ ′ > → < E, τ > .

By the induction hypothesis, τ ′ |= pre(A). Thus τ ′ |= r ∧ pre(A). By inter-
ference freedom and the Soundness Theorem 3.1,

|= {r ∧ pre(A)} A {r}.

Thus τ |= r. ⊓⊔

Corollary 8.1. (Parallelism with Shared Variables) The parallelism
with shared variables rule 27 is sound for partial correctness of parallel pro-
grams.

Corollary 8.2. (Soundness of PSV) The proof system PSV is sound for
partial correctness of parallel programs.

Proof. Follows by the same argument as the one given in the proof of the
Soundness Corollary 7.1. ⊓⊔
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8.5 Verification: Total Correctness

Component Programs

Total correctness of component programs can be proved by using the proof
system TW for the total correctness of while programs together with the
atomic region rule 26 for atomic regions introduced in Section 8.4. This rule
is clearly sound for total correctness.

However, somewhat unexpectedly, this approach leads to a definition of
proof outlines for total correctness that is too weak for our purposes. To
ensure that, as a next step, total correctness of parallel programs can be
proved by using interference free proof outlines for total correctness of the
component programs, we must strengthen the premises of the formation rule
(viii) of Chapter 3 defining the proof outlines for total correctness of a while
loop:

{p ∧ B} S∗ {p},
{p ∧ B ∧ t = z} S∗∗ {t < z},
p → t ≥ 0

{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

where t is an integer expression and z is an integer variable not occurring in
p, t, B or S∗∗. We clarify this point at the end of this section.

In the premises of this rule we separated proofs outlines involving S∗ and
S∗∗ for the facts that the assertion p is kept invariant and that the bound
function t decreases, but only the proof S∗ for the invariant p is recorded
in the proof outline of the while loop. In the context of parallel programs
it is possible that components interfere with the termination proofs of other
components. To eliminate this danger we now strengthen the definition of a
proof outline for total correctness and require that in proof outlines of loops
while B do S od the bound function t is such that

(i) all normal assignments and atomic regions inside S decrease t or leave
it unchanged,

(ii) on each syntactically possible path through S at least one normal as-
signment or atomic region decreases t.

By a path we mean here a possibly empty finite sequence of normal assign-
ments and atomic regions. Intuitively, for a sequential component program S,
path(S) stands for the set of all syntactically possible paths through the com-
ponent program S, where each path is identified with the sequence of normal
assignments and atomic regions lying on it. This intuition is not completely
correct because for while-loops we assume that they immediately terminate.

The idea is that if the bound function t is to decrease along every syntacti-
cally possible path while never being increased, then it suffices to assume that
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every while loop is exited immediately. Indeed, if along such “shorter” paths
the decrease of the bound function t is guaranteed, then it is also guaranteed
along the “longer” paths that do take into account the loop bodies.

The formal definition of path(S) is as follows.

Definition 8.2. For a sequential component S, we define the set path(S) by
induction on S:

• path(skip) = {ε},

• path(u := t) = {u := t},

• path(〈S〉) = {〈S〉},

• path(S1; S2) = path(S1) ; path(S2),

• path(if B then S1 else S2 fi) = path(S1) ∪ path(S2),

• path(while B do S od) = {ε}. ⊓⊔

In the above definition ε denotes the empty sequence and sequential com-
position π1; π2 of paths π1 and π2 is lifted to sets Π1,Π2 of paths by putting

Π1; Π2 = {π1; π2 | π1 ∈ Π1 and π2 ∈ Π2}.

For any path π we have π; ε = ε; π = π.
We can now formulate the revised definition of a proof outline.

Definition 8.3. (Proof Outline: Total Correctness) Proof outlines and
standard proof outlines for the total correctness of component programs are
generated by the same formation axioms and rules as those used for defining
(standard) proof outlines for the partial correctness of component programs.
The only exception is the formation rule (v) dealing with while loops which
is replaced by the following formation rule.

(xi)

(1) {p ∧ B} S∗ {p} is standard,
(2) {pre(R) ∧ t = z} R {t ≤ z} for every normal

assignment and atomic region R within S,
(3) for each path π ∈ path(S) there exists

a normal assignment or atomic region R in π
such that
{pre(R) ∧ t = z} R {t < z},

(4) p → t ≥ 0

{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

where t is an integer expression and z is an integer variable not occurring in
p, t, B or S∗, and where pre(R) stands for the assertion preceding R in the
standard proof outline {p ∧ B} S∗ {p} for total correctness. ⊓⊔
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Note that in premise (1) formation rule (xi) expects a standard proof out-
line for total correctness but in its conclusion it produces a “non-standard”
proof outline for the while loop. To obtain a standard proof outline in the
conclusion, it suffices to remove from it the assertions p ∧ B and p surround-
ing S∗.

Convention In this and the next chapter we always refer to proof outlines
that satisfy the stronger conditions of Definition 8.3. ⊓⊔

Parallel Composition: Interference Freedom

The total correctness of a parallel program is proved by considering interfer-
ence free standard proof outlines for the total correctness of its component
programs. In the definition of interference freedom both the assertions and
the bound functions appearing in the proof outlines must now be tested. This
is done as follows.

Definition 8.4. (Interference Freedom: Total Correctness)

(1) Let S be a component program. Consider a standard proof outline
{p} S∗ {q} for total correctness and a statement A with the precondi-
tion pre(A). We say that A does not interfere with {p} S∗ {q} if the
following two conditions are satisfied:

(i) for all assertions r in {p} S∗ {q} the correctness formula

{r ∧ pre(A)} A {r}

holds in the sense of total correctness,
(ii) for all bound functions t in {p} S∗ {q} the correctness formula

{pre(A) ∧ t = z} A {t ≤ z}

holds in the sense of total correctness, where z is an integer variable
not occurring in A, t or pre(A).

(2) Let [S1‖. . .‖Sn] be a parallel program. Standard proof outlines
{pi} S∗

i {qi}, i ∈ {1, . . . , n}, for total correctness are called interference
free if no normal assignment or atomic region A of a component program
Si interferes with the proof outline {pj} S∗

j {qj} of another component
program Sj where i 6= j. ⊓⊔

Thus interference freedom for total correctness means that the execution
of atomic steps of one component program neither falsifies the assertions
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(condition (i)) nor increases the bound functions (condition (ii)) used in the
proof outline of any other component program.

Note that the correctness formulas of condition (ii) have the same form
as the ones considered in the second premise of formation rule (xi) for proof
outlines for total correctness of while loops. In particular, the value of bound
functions may drop during the execution of other components.

As in the case of partial correctness, normal assignments and atomic re-
gions need not be checked for interference freedom against assertions and
bound functions from which they are disjoint.

By referring to this extended notion of interference freedom, we may reuse
the parallelism with shared variables rule 27 for proving total correctness of
parallel programs. Altogether we now use the following proof system TSV for
total correctness of parallel programs with shared variables.

PROOF SYSTEM TSV :
This system consists of the group of axioms
and rules 1–5, 7, 25–27 and A3–A6.

Example 8.4. As a first application of this proof system let us prove that
the program

S ≡ [while x > 2 do x := x − 2 od‖x := x − 1]

satisfies the correctness formula

{x > 0 ∧ even(x)} S {x = 1}

in the sense of total correctness. We use the following standard proof outlines
for the components of S:

{inv : x > 0}{bd : x}
while x > 2 do

{x > 2}
x := x − 2

od
{x = 1 ∨ x = 2}

and
{even(x)} x := x − 1 {odd(x)}.

Here even(x) and odd(x) express that x is an even or odd integer value,
respectively. These proof outlines satisfy the requirements of Definition 8.4:
the only syntactic path in the loop body consists of the assignment x := x−2,
and the bound function t ≡ x gets decreased by executing this assignment.

Interference freedom of the proof outlines is easily shown. For example,

{x > 2 ∧ even(x)} x := x − 1 {x > 2},
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holds because of x > 2 ∧ even(x) → x > 3. Thus the parallelism with shared
variables rule 27 used now for total correctness is applicable and yields the
desired correctness result. ⊓⊔

Soundness

Finally, we prove soundness of the system TSV for total correctness. To this
end we first establish the following lemma.

Lemma 8.9. (Termination) Let {pi} S∗
i {qi}, i ∈ {1, . . . , n}, be interfer-

ence free standard proof outlines for total correctness for component programs
Si. Then

⊥ 6∈ Mtot [[[S1‖. . .‖Sn]]]([[
n∧

i=1

pi]]). (8.13)

Proof. Suppose that the converse holds. Consider an infinite computation
ξ of [S1‖. . .‖Sn] starting in a state σ satisfying

∧n

i=1 pi. For some loop
while B do S od within a component Si infinitely many configurations in ξ
are of the form

< [T1‖. . .‖Tn], τ > (8.14)

such that Ti ≡ at(while B do S od, Si) and the ith component is activated
in the transition step from the configuration (8.14) to its successor configu-
ration in ξ.

Let p be the invariant and t the bound function associated with this loop.
By the Strong Soundness for Parallel Programs Lemma 8.8, for each configu-
ration of the form (8.14) we have τ |= p because p ≡ pre(while B do S od).
But p → t ≥ 0 holds by virtue of the definition of the proof outline for total
correctness of component programs (Definition 8.3), so for each configuration
of the form (8.14)

τ(t) ≥ 0. (8.15)

Consider now two consecutive configurations in ξ of the form (8.14), say
< R1, τ1 > and < R2, τ2 >. In the segment η of ξ starting at < R1, τ1 > and
ending with < R2, τ2 > a single iteration of the loop while B do S od took
place. Let π ∈ path(S) be the path through S, in the sense of Definition 8.2,
which was taken in this iteration.

Let A be a normal assignment or an atomic region executed within the
segment η, say in the state σ1, and let σ2 be the resulting state. Thus

< A, σ1 > → < E, σ2 > .

By Lemma 8.8, σ1 |= pre(A). Suppose that A is a subprogram of Sj where
i 6= j. Then by the definition of interference freedom (Definition 8.4(1)(ii)),
we have {pre(A) ∧ t = z} A {t < z} and thus σ2(t) ≤ σ1(t).
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Suppose that A is a subprogram of Si. Then A belongs to π. Thus
by the definition of the proof outline for total correctness of loops
{pre(A) ∧ t = z} A {t ≤ z} and thus σ2(t) ≤ σ1(t). Moreover, for some A
belonging to the path π we actually have {pre(A) ∧ t = z} A {t < z} and
thus σ2(t) < σ1(t).

This shows that the value of t during the execution of the segment η
decreases; that is,

τ2(t) < τ1(t). (8.16)

Since this is true for any two consecutive configurations of the form (16) in the
infinite computation ξ, the statements (8.15) and (8.16) yield a contradiction.
This proves (8.13). ⊓⊔

Corollary 8.3. (Parallelism with Shared Variables) The parallelism
with shared variables rule 27 is sound for total correctness of parallel pro-
grams.

Proof. Consider interference free standard proof outlines for total correct-
ness for component programs of a parallel program. Then the Termination
Lemma 8.9 applies. By removing from each of these proof outlines all anno-
tations referring to the bound functions, we obtain interference free standard
proof outlines for partial correctness. The desired conclusion now follows from
the Parallelism with Shared Variables Corollary 8.1. ⊓⊔

Corollary 8.4. (Soundness of TSV) The proof system TSV is sound for
total correctness of parallel programs.

Proof. Follows by the same argument as the one given in the proof of the
Soundness Corollary 7.1. ⊓⊔

Discussion

It is useful to see why we could not retain in this section the original formation
rule (formation rule (viii)) defining proof outlines for total correctness for a
while loop.

Consider the following parallel program

S ≡ [S1‖S2],

where
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S1 ≡ while x > 0 do
y := 0;
if y = 0 then x := 0

else y := 0 fi
od

and

S2 ≡ while x > 0 do
y := 1;
if y = 1 then x := 0

else y := 1 fi
od.

Individually, the while programs S1 and S2 satisfy the proof outlines for
total correctness in which all assertions, including the loop invariants, equal
true and the bound functions are in both cases max(x, 0).

Indeed, in the case of S1 we have

{x > 0 ∧ max(x, 0) = z}
{z > 0}
y := 0;
if y = 0 then x := 0 else y := 0 fi
{x = 0 ∧ z > 0}
{max(x, 0) < z}

and analogously for the case of S2.
Suppose now for a moment that we adopt the above proof outlines as proof

outlines for total correctness of the component programs S1 and S2. Since

{max(x, 0) = z} x := 0 {max(x, 0) ≤ z}

holds, we conclude that these proof outlines are interference free in the sense
of Definition 8.4. By the parallelism with shared variables rule 27 we then
obtain the correctness formula

{true} S {true}

in the sense of total correctness.
However, it is easy to see that the parallel program S can diverge. Indeed,

consider the following initial fragment of a computation of S starting in a
state σ in which x is positive:
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< [S1‖S2], σ >
1
→ < [y := 0; if . . . fi; S1‖S2], σ >
2
→ < [y := 0; if . . . fi; S1‖y := 1; if . . . fi; S2], σ >
1
→ < [if . . . fi; S1‖y := 1; if . . . fi; S2], σ[y := 0] >
2
→ < [if . . . fi; S1‖if . . . fi; S2], σ[y := 1] >
1
→ < [y := 0; S1‖if . . . fi; S2], σ[y := 1] >
1
→ < [S1‖if . . . fi; S2], σ[y := 0] >
2
→ < [S1‖y := 1; S2], σ[y := 0] >
2
→ < [S1‖S2], σ[y := 1] > .

To enhance readability in each step we annotated the transition relation →
with the index of the activated component. Iterating the above scheduling of
the component programs we obtain an infinite computation of S.

Thus with proof outlines for total correctness in the sense of Definition 3.8,
the parallelism with shared variables rule 27 would become unsound. This
explains why we revised the definition of proof outlines for total correctness.
It is easy to see why with the new definition of proof outlines for total cor-
rectness we can no longer justify the proof outlines suggested above. Indeed,
along the path y := 0; y := 0 of the first loop body the proposed bound
function max(x, 0) does not decrease. This path cannot be taken if S1 is
executed in isolation but it can be taken due to interference with S2 as the
above example shows.

Unfortunately, the stronger premises in the new formation rule (xi) for
total correctness proof outlines of while loops given in Definition 8.3 reduce
its applicability. For example, we have seen that the component program S1

terminates when considered in isolation. This can be easily proved using the
loop II rule (rule 7) but we cannot record this proof as a proof outline for
total correctness in the sense of Definition 8.3 because on the path y := 0 the
variable x is not decreased.

However, as we are going to see, many parallel programs can be successfully
handled in the way proposed here.

8.6 Case Study: Find Positive Element More Quickly

In Section 7.4, we studied the problem of finding a positive element in an
array a : integer → integer. As solution we presented a disjoint parallel
program FIND. Here we consider an improved program FINDPOS for the
same problem. Thus it should satisfy the correctness formula

{true}
FINDPOS (8.17)
{1 ≤ k ≤ N + 1 ∧ ∀(0 < l < k) : a[l] ≤ 0 ∧ (k ≤ N → a[k] > 0)}
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in the sense of total correctness, where a 6∈ change(FINDPOS). Just as in
FIND, the program FINDPOS consists of two components S1 and S2 activated
in parallel. S1 searches for an odd index k of a positive element and S2

searches for an even one.
What is new is that now S1 should stop searching once S2 has found

a positive element and vice versa for S2. Thus some communication should
take place between S1 and S2. This is achieved by making oddtop and eventop
shared variables of S1 and S2 by refining the loop conditions of S1 and S2

into
i < min{oddtop, eventop} and j < min{oddtop, eventop},

respectively. Thus the program FINDPOS is of the form

FINDPOS ≡ i := 1; j := 2; oddtop := N + 1; eventop := N + 1;
[S1‖S2];
k := min(oddtop, eventop),

where

S1 ≡ while i < min(oddtop, eventop) do
if a[i] > 0 then oddtop := i

else i := i + 2 fi
od

and

S2 ≡ while j < min(oddtop, eventop) do
if a[j] > 0 then eventop := j

else j := j + 2 fi
od.

This program is studied in Owicki and Gries [1976a].
To prove (8.17) in the system TSV, we first construct appropriate proof

outlines for S1 and S2. Let p1, p2 and t1, t2 be the invariants and bound
functions introduced in Section 7.4; that is,

p1 ≡ 1 ≤ oddtop ≤ N + 1 ∧ odd(i) ∧ 1 ≤ i ≤ oddtop + 1
∧ ∀l : (odd(l) ∧ 1 ≤ l < i → a[l] ≤ 0)
∧ (oddtop ≤ N → a[oddtop] > 0),

t1 ≡ oddtop + 1 − i,

p2 ≡ 2 ≤ eventop ≤ N + 1 ∧ even(j) ∧ j ≤ eventop + 1
∧ ∀l : (even(l) ∧ 1 ≤ l < j → a[l] ≤ 0)
∧ (eventop ≤ N → a[eventop] > 0),

t2 ≡ eventop + 1 − j.

Then we consider the following standard proof outlines for total correctness.
For S1
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{inv : p1}{bd : t1}
while i < min(oddtop, eventop) do

{p1 ∧ i < oddtop}
if a[i] > 0 then {p1 ∧ i < oddtop ∧ a[i] > 0}

oddtop := i
else {p1 ∧ i < oddtop ∧ a[i] ≤ 0}

i := i + 2
fi

od
{p1 ∧ i ≥ min(oddtop, eventop)}

and there is a symmetric standard proof outline for S2. Except for the new
postconditions which are the consequences of the new loop conditions, all
other assertions are taken from the corresponding proof outlines in Sec-
tion 7.4. Note that the invariants and the bound functions satisfy the new
conditions formulated in Definition 8.3.

To apply the parallelism with shared variables rule 27 for the parallel
composition of S1 and S2, we must show interference freedom of the two proof
outlines. This amounts to checking 24 correctness formulas! Fortunately, 22
of them are trivially satisfied because the variable changed by the assignment
does not appear in the assertion or bound function under consideration. The
only nontrivial cases deal with the interference freedom of the postcondition
of S1 with the assignment to the variable eventop in S2 and, symmetrically,
of the postcondition of S2 with the assignment to the variable oddtop in S1.

We deal with the postcondition of S1,

p1 ∧ i ≥ min(oddtop, eventop),

and the assignment eventop := j. Since pre(eventop := j) implies j <
eventop, we have the following proof of interference freedom:

{p1 ∧ i ≥ min(oddtop, eventop) ∧ pre(eventop := j)}
{p1 ∧ i ≥ min(oddtop, eventop) ∧ j < eventop}
{p1 ∧ i ≥ min(oddtop, j)}
eventop := j
{p1 ∧ i ≥ min(oddtop, eventop)}.

An analogous argument takes care of the postcondition of S2. This finishes
the overall proof of interference freedom of the two proof outlines.

An application of the parallelism with shared variables rule 27 now yields

{p1 ∧ p2}
[S1‖S2]
{p1 ∧ p2 ∧ i ≥ min(oddtop, eventop) ∧ j ≥ min(oddtop, eventop)}.

By the assignment axiom and the consequence rule,



294 8 Parallel Programs with Shared Variables

{true}
i := 1; j := 2; oddtop := N + 1; eventop := N + 1;
[S1‖S2]
{ min(oddtop, eventop) ≤ N + 1

∧ ∀(0 < l < min(oddtop, eventop)) : a[l] ≤ 0
∧ (min(oddtop, eventop) ≤ N → a[min(oddtop, eventop)] > 0)}.

Hence the final assignment k := min(oddtop, eventop) in FINDPOS estab-
lishes the desired postcondition of (8.17).

8.7 Allowing More Points of Interference

The fewer points of interference there are, the simpler the correctness proofs
of parallel programs become. On the other hand, the more points of interfer-
ence parallel programs have, the more realistic they are. In this section we
present two program transformations that allow us to introduce more points
of interference without changing the program semantics. The first transfor-
mation achieves this by reducing the size of atomic regions.

Theorem 8.1. (Atomicity) Consider a parallel program of the form S ≡
S0; [S1‖. . .‖Sn] where S0 is a while program. Let T result from S by replac-
ing in one of its components, say Si with i > 0, either

• an atomic region 〈R1; R2〉 where one of the Rls is disjoint from all com-
ponents Sj with j 6= i by

〈R1〉; 〈R2〉

or

• an atomic region 〈if B then R1 else R2 fi〉 where B is disjoint from all
components Sj with j 6= i by

if B then 〈R1〉 else 〈R2〉 fi.

Then the semantics of S and T agree; that is,

M[[S]] = M[[T ]] and Mtot [[S]] = Mtot [[T ]].

Proof. We treat the case when S has no initialization part S0 and when
T results from S by splitting 〈R1; R2〉 into 〈R1〉; 〈R2〉. We proceed in five
steps.

Step 1 We first define good and almost good (fragments of) computations
for the program T . By an Rk-transition, k ∈ {1, 2}, we mean a transition
occurring in a computation of T which is of the form



8.7 Allowing More Points of Interference 295

< [U1‖. . .‖〈Rk〉; Ui‖. . .‖Un], σ > → < [U1‖. . .‖Ui‖. . .‖Un], τ > .

We call a fragment ξ of a computation of T good if in ξ each R1-transition is
immediately followed by the corresponding R2-transition, and we call ξ almost
good if in ξ each R1-transition is eventually followed by the corresponding R2-
transition.

Observe that every finite computation of T is almost good.

Step 2 To compare the computations of S and T , we use the i/o equivalence
introduced in Definition 7.4. We prove the following two claims.

• Every computation of S is i/o equivalent to a good computation of T ,
• every good computation of T is i/o equivalent to a computation of S.

First consider a computation ξ of S. Every program occurring in a configu-
ration of ξ is a parallel composition of n components. For such a program U
let the program split(U) result from U by replacing in the ith component of
U every occurrence of 〈R1; R2〉 by 〈R1〉; 〈R2〉. For example, split(S) ≡ T .
We construct an i/o equivalent good computation of T from ξ by replacing

• every transition of the form

< [U1‖. . .‖〈R1; R2〉; Ui‖. . .‖Un], σ >
→ < [U1‖. . .‖Ui‖. . .‖Un], τ >

with two consecutive transitions

< split([U1‖. . .‖〈R1; R2〉; Ui‖. . .‖Un]), σ >
→ < split([U1‖. . .‖〈R2〉; Ui‖. . .‖Un]), σ1 >
→ < split([U1‖. . .‖Ui‖. . .‖Un]), τ >,

where the intermediate state σ1 is defined by

< 〈R1〉, σ > → < E, σ1 >,

• every other transition

< U, σ > → < V, τ >

with
< split(U), σ > → < split(V ), τ > .

Now consider a good computation η of T . By applying the above replace-
ment operations in the reverse direction we construct from η an i/o equivalent
computation of S.

Step 3 For the comparison of computations of T we use i/o equivalence, but
to reason about it we also introduce a more discriminating variant that we
call “permutation equivalence”.
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First consider an arbitrary computation ξ of T . Every program occurring
in a configuration of ξ is the parallel composition of n components. To dis-
tinguish between different kinds of transitions in ξ, we attach labels to the
transition arrow → . We write

< U, σ >
Rk→ < V, τ >

if k ∈ {1, 2} and < U, σ > → < V, τ > is an Rk-transition of the i-th
component of U ,

< U, σ >
i
→ < V, τ >

if < U, σ > → < V, τ > is any other transition caused by the activation of
the ith component of U , and

< U, σ >
j
→ < V, τ >

if j 6= i and < U, σ > → < V, τ > is a transition caused by the activation of
the jth component of U .

Hence, a unique label is associated with each transition arrow in a com-
putation of T . This enables us to define the following.

Two computations η and ξ of T are permutation equivalent if

• η and ξ start in the same state,
• for all states σ, η terminates in σ iff ξ terminates in σ,
• the possibly infinite sequence of labels attached to the transition arrows

in η and ξ are permutations of each other.

Clearly, permutation equivalence of computations of T implies their i/o
equivalence.

Step 4 We prove now that every computation of T is i/o equivalent to a
good computation of T . To this end, we establish two simpler claims.

Claim 1 Every computation of T is i/o equivalent to an almost good com-
putation of T .

Proof of Claim 1. Consider a computation ξ of T that is not almost good.
Then by the observation stated at the end of Step 1, ξ is infinite. More
precisely, there exists a suffix ξ1 of ξ that starts in a configuration < U, σ >
with an R1-transition and then continues with infinitely many transitions not
involving the ith component, say,

ξ1 :< U, σ >
R1→ < U0, σ0 >

j1
→ < U1, σ1 >

j2
→ . . .,

where jk 6= i for k ≥ 1. Using the Change and Access Lemma 3.4 we conclude
the following: if R1 is disjoint from Sj with j 6= i, then there is also an infinite
transition sequence of the form
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ξ2 :< U, σ >
j1
→ < V1, τ1 >

j2
→ . . .,

and if R2 is disjoint from Sj with j 6= i, then there is also an infinite transition
sequence of the form

ξ3 :< U, σ >
R1→ < U0, σ0 >

R2→ < V0, τ0 >
j1
→ < V1, τ1 >

j2
→ . . . .

We say that ξ2 is obtained from ξ1 by deletion of the initial R1-transition
and ξ3 is obtained from ξ1 by insertion of an R2-transition. Replacing the
suffix ξ1 of ξ by ξ2 or ξ3 yields an almost good computation of T which is i/o
equivalent to ξ.

Claim 2 Every almost good computation of T is permutation equivalent to
a good computation of T .

Proof of Claim 2. Using the Change and Access Lemma 3.4 we establish the
following: if Rk with k ∈ {1, 2} is disjoint from Sj with j 6= i, then the

relations
Rk→ and

j
→ commute, or

Rk→ ◦
j
→ =

j
→ ◦

Rk→ ,

where ◦ denotes relational composition (see Section 2.1). Repeated appli-
cation of this commutativity allows us to permute the transitions of every
almost good fragment ξ1 of a computation of T of the form

ξ1 :< U, σ >
R1→ ◦

j1
→ ◦ . . . ◦

jm
→ ◦

R2→ < V, τ >

with jk 6= i for k ∈ {1, . . .,m} into a good order, that is, into

ξ2 :< U, σ >
j1
→ ◦ . . . ◦

jm
→ ◦

R1→ ◦
R2→ < V, τ >

or
ξ3 :< U, σ >

R1→ ◦
R2→ ◦

j1
→ ◦ . . . ◦

jm
→ < V, τ >

depending on whether R1 or R2 is disjoint from Sj with j 6= i.
Consider now an almost good computation ξ of T . We construct from ξ a

permutation equivalent good computation ξ∗ of T by successively replacing
every almost good fragment of ξ of the form ξ1 by a good fragment of the
form ξ2 or ξ3.

Claims 1 and 2 together imply the claim of Step 4.

Step 5 By combining the results of Steps 3 and 5, we get the claim of the
theorem for the case when S has no initialization part S0 and T results
from S by splitting 〈R1; R2〉 into 〈R1〉; 〈R2〉. The cases when S has an
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initialization part S0 and where T results from S by splitting the atomic
region 〈if B then R1 else R2 fi〉 are left as Exercise 8.11. ⊓⊔

Corollary 8.5. (Atomicity) Under the assumptions of the Atomicity The-
orem, for all assertions p and q

|= {p} S {q} iff |= {p} T {q}

and analogously for |=tot .

The second transformation moves initializations of a parallel program in-
side one of its components.

Theorem 8.2. (Initialization) Consider a parallel program of the form

S ≡ S0; R0; [S1‖. . .‖Sn],

where S0 and R0 are while programs. Suppose that for some i ∈ {1, . . . , n}
the initialization part R0 is disjoint from all component programs Sj with
j 6= i. Then the program

T ≡ S0; [S1‖. . .‖R0; Si‖. . .‖Sn]

has the same semantics as S; that is,

M[[S]] = M[[T ]] and Mtot [[S]] = Mtot [[T ]].

Proof. The proof can be structured similarly to the one of the Atomicity
Theorem and is left as Exercise 8.12. ⊓⊔

Corollary 8.6. (Initialization) Under the assumptions of the Initialization
Theorem, for all assertions p and q

|= {p} S {q} iff |= {p} T {q}

and analogously for |=tot .

The program S considered in the Atomicity Corollary 8.5 and Initializa-
tion Corollary 8.6 admits fewer points for possible interference among its
components and thus fewer computations than the corresponding program
T . Therefore S is easier to prove correct. Thus in correctness proofs we apply
the program transformations for atomicity and initialization “backwards”;
that is, programs of the form T are replaced by programs of the form S and
then verified. Examples show that this approach often avoids the need for
auxiliary variables in the sense of rule 25.

We could have reformulated the Corollaries 8.5 and 8.6 also as proof rules
and integrated them in the proof systems PSV and TSV introduced in Sec-
tions 8.4 and 8.5. However, we prefer to keep them separate to stress their
status as additional program transformations.
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8.8 Case Study: Parallel Zero Search

Let us consider Solution 3 to the zero search problem given in Section 1.1,
that is, the parallel program

ZERO-3 ≡ found := false; [S1‖S2]

with

S1 ≡ x := 0;
while ¬found do

x := x + 1;
if f(x) = 0 then found := true fi

od

and

S2 ≡ y := 1;
while ¬found do

y := y − 1;
if f(y) = 0 then found := true fi

od.

We wish to prove the partial correctness of this solution, that is, that in case
of termination ZERO-3 has indeed found a zero of the function f in one of
its variables x or y:

|= {true} ZERO-3 {f(x) = 0 ∨ f(y) = 0}. (8.18)

Termination cannot be proved here; it holds only under the assumption of
fairness (see Chapter 1).

We proceed in two steps.

Step 1. Simplifying the program

We first use the Atomicity Corollary 8.5 and Initialization Corollary 8.6 and
reduce the original problem (8.18) to the following claim

|= {∃u : f(u) = 0} T {f(x) = 0 ∨ f(y) = 0}, (8.19)

where

T ≡ found := false; x := 0; y := 1;
[T1‖T2]

with
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T1 ≡ while ¬found do
〈 x := x + 1;
if f(x) = 0 then found := true fi〉

od

and

T2 ≡ while ¬found do
〈 y := y − 1;
if f(y) = 0 then found := true fi〉.

od.

Both corollaries are applicable here by virtue of the fact that x does not
appear in S2 and y does not appear in S1. Recall that by assumption, assign-
ments and the skip statement are considered to be atomic regions.

Step 2. Proving partial correctness

We prove (8.19) in the proof system PSV for partial correctness of parallel
programs with shared variables introduced in Section 8.4. To this end, we need
to construct interference free standard proof outlines for partial correctness
of the sequential components T1 and T2 of T .

For T1 we use the invariant

p1 ≡ x ≥ 0 (8.20)
∧ (found → (x > 0 ∧ f(x) = 0) ∨ (y ≤ 0 ∧ f(y) = 0)) (8.21)
∧ (¬found ∧ x > 0 → f(x) 6= 0) (8.22)

to construct the standard proof outline

{inv : p1}
while ¬found do

{x ≥ 0 ∧ (found → y ≤ 0 ∧ f(y) = 0) (8.23)
∧ (x > 0 → f(x) 6= 0)}

〈 x := x + 1;
if f(x) = 0 then found := true fi〉

od
{p1 ∧ found}.

Similarly, for T2 we use the invariant

p2 ≡ y ≤ 1 (8.24)
∧ (found → (x > 0 ∧ f(x) = 0) ∨ (y ≤ 0 ∧ f(y) = 0)) (8.25)
∧ (¬found ∧ y ≤ 0 → f(y) 6= 0) (8.26)

to construct the standard proof outline
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{inv : p2}
while ¬found do

{y ≤ 1 ∧ (found → x > 0 ∧ f(x) = 0)
∧ (y ≤ 0 → f(y) 6= 0)}

〈 y := y − 1;
if f(y) = 0 then found := true fi〉

od
{p2 ∧ found}.

The intuition behind the invariants p1 and p2 is as follows. Conjuncts
(8.20) and (8.24) state the range of values that the variables x and y may
assume during the execution of the loops T1 and T2.

Thanks to the initialization of x with 0 and y with 1 in T , the condition
x > 0 expresses the fact that the loop T1 has been traversed at least once,
and the condition y ≤ 0 similarly expresses the fact that the loop T2 has been
traversed at least once. Thus the conjuncts (8.21) and (8.25) in the invariants
p1 and p2 state that if the variable found is true, then the loop T1 has been
traversed at least once and a zero x of f has been found, or that the loop T2

has been traversed at least once and a zero y of f has been found.
The conjunct (8.22) in p1 states that if the variable found is false and

the loop T1 has been traversed at least once, then x is not a zero of f . The
conjunct (8.26) in p2 has an analogous meaning.

Let us discuss now the proof outlines. In the first proof outline the most
complicated assertion is (8.23). Note that

p1 ∧ ¬found → (8.23)

as required by the definition of a proof outline. (We cannot use, instead of
(8.23), the assertion p1 ∧ ¬found because the latter assertion does not pass
the interference freedom test with respect to the loop body in T2.)

Given (8.23) as a precondition, the loop body in T1 establishes the invari-
ant p1 as a postcondition, as required. Notice that the conjunct

found → y ≤ 0 ∧ f(y) = 0

in the precondition (8.23) is necessary to establish the conjunct (8.21) in the
invariant p1. Indeed, without this conjunct in (8.23), the loop body in T1

would fail to establish (8.21) since initially

found ∧ x > 0 ∧ f(x) = 0 ∧ f(x + 1) 6= 0 ∧ y ≤ 0 ∧ f(y) 6= 0

might hold.
Next we deal with the interference freedom of the above proof outlines. In

total six correctness formulas must be proved. The three for each component
are pairwise symmetric.
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The most interesting case is the interference freedom of the assertion (8.23)
in the proof outline for T1 with the loop body in T2. It is proved by the
following proof outline:

{ x ≥ 0 ∧ (found → y ≤ 0 ∧ f(y) = 0) ∧ (x > 0 → f(x) 6= 0)
∧ y ≤ 1 ∧ (found → x > 0 ∧ f(x) = 0) ∧ (y ≤ 0 → f(y) 6= 0)}

{x ≥ 0 ∧ y ≤ 1 ∧ ¬found ∧ (x > 0 → f(x) 6= 0)}
〈 y := y − 1;
if f(y) = 0 then found := true fi〉

{x ≥ 0 ∧ (found → y ≤ 0 ∧ f(y) = 0) ∧ (x > 0 → f(x) 6= 0)}.

Note that the first assertion in the above proof outline indeed implies
¬found:

(found → (x > 0 ∧ f(x) = 0)) ∧ (x > 0 → f(x) 6= 0)

implies
found → (f(x) 6= 0 ∧ f(x) = 0)

implies
¬found.

This information is recorded in the second assertion of the proof outline and
used to establish the last assertion.

The remaining cases in the interference freedom proof are straightforward
and left to the reader.

We now apply the parallelism with shared variables rule 27 and get

{p1 ∧ p2} [T1‖T2] {p1 ∧ p2 ∧ found}.

Since for the initialization part of T the correctness formula

{true} found := false;x := 0 : y := 1 {p1 ∧ p2}

holds, a straightforward application of the rule for sequential composition
and the consequence rule yields the desired partial correctness result (8.18).

Of course, we could have avoided applying the program transformations in
Step 1 and proved the correctness formula (8.18) directly in the proof system
PSV . But this would lead to a more complicated proof because ZERO-3
contains more interference points than T and thus requires a more complex
test of interference freedom. In fact, we need auxiliary variables in the sense
of rule 25 to deal with the initialization x := 0 and y := 1 within the parallel
composition in ZERO-3 (see Exercise 8.8). This shows that the Atomicity
Theorem 8.1 and the Initialization Theorem 8.2 simplify the task of proving
parallel programs correct.
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8.9 Exercises

8.1. Prove the Input/Output Lemma 3.3 for parallel programs.

8.2. Prove the Change and Access Lemma 3.4 for parallel programs.

8.3. Prove the Stuttering Lemma 7.9 for parallel programs.

8.4. Suppose that

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖Rn], τ > .

Prove that for j ∈ {1, . . . , n} either Rj ≡ E or Rj ≡ at(T, Sj) for a normal
subprogram T of Sj .
Hint. See Exercise 3.13.

8.5.

(i) Prove the correctness formula

{x = 0} [x := x + 1‖x := x + 2] {x = 3}

in the proof system PW + rule 27.
(ii) By contrast, show that the correctness formula

{x = 0} [x := x + 1‖x := x + 1] {x = 2}

is not a theorem in the proof system PW + rule 27.
(iii) Explain the difference between (i) and (ii), and prove the correctness

formula of (ii) in the proof system PSV.

8.6. Prove the correctness formula

{true} [x := x + 2; x := x + 2‖x := 0] {x = 0 ∨ x = 2 ∨ x = 4}

in the proof system PSV.

8.7. Show that the rule of disjoint parallelism (rule 24) is not sound for
parallel programs.
Hint. Consider the component programs x := 0 and x := 1; y := x.

8.8. Consider the parallel program ZERO-3 from the Case Study 8.8. Prove
the correctness formula

{∃u : f(u) = 0} ZERO-3 {f(x) = 0 ∨ f(y) = 0}

in the proof system PSV.
Hint. Introduce two Boolean auxiliary variables init1 and init2 to record
whether the initializations x := 0 and y := 1 of the component programs S1

and S2 of ZERO-3 have been executed. Thus instead of S1 consider
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S′
1 ≡ 〈x := 0; init1 := true〉;

while ¬found do
x := x + 1;
if f(x) = 0 then found := true fi

od

and analogously with S2. Use

p1 ≡ init1 ∧ x ≥ 0
∧ (found → (x > 0 ∧ f(x) = 0)

∨ (init2 ∧ y ≤ 0 ∧ f(y) = 0))
∧ (¬found ∧ x > 0 → f(x) 6= 0)

as a loop invariant in S′
1 and a symmetric loop invariant in S′

2 to prove

{¬found ∧ ¬init1 ∧ ¬init2} [S′
1‖S

′
2] {f(x) = 0 ∨ f(y) = 0}.

Finally, apply the rule of auxiliary variables (rule 25).

8.9. Consider the parallel program ZERO-2 from Solution 2 in Section 1.1.

(i) Prove the correctness formula

{true} ZERO-2 {f(x) = 0 ∨ f(y) = 0}

in the proof system PSV.
Hint. Introduce a Boolean auxiliary variable to indicate which of the
components of ZERO-2 last updated the variable found.

(ii) Show that the above correctness formula is false in the sense of total
correctness by describing an infinite computation of ZERO-2.

8.10. The parallel programs considered in Case Studies 7.4 and 8.6 both
begin with the initialization part

i := 1; j := 2; oddtop := N + 1; eventop := N + 1.

Investigate which of these assignments can be moved inside the parallel com-
position without invalidating the correctness formulas (8.15) in Section 7.4
and (8.17) in Section 8.6.
Hint. Apply the Initialization Theorem 8.2 or show that the correctness for-
mulas (8.15) in Section 7.4 and (8.17) in Section 8.6 are invalidated.

8.11. Prove the Atomicity Theorem 8.1 for the cases when S has an initial-
ization part and when T is obtained from S by splitting the atomic region
〈if B then R1 else R2 fi〉.

8.12. Prove the Initialization Theorem 8.2.

8.13. Prove the Sequentialization Lemma 7.7 using the Stuttering Lemma 7.9
and the Initialization Theorem 8.2.
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8.14. Consider component programs S1, . . ., Sn and T1, . . ., Tn such that Si

is disjoint from Tj whenever i 6= j. Prove that the parallel programs

S ≡ [S1‖. . .‖Sn]; [T1‖. . .‖Tn]

and
T ≡ [S1; T1‖. . .‖Sn; Tn]

have the same semantics under M, Mtot and Mfair. In the terminology of
Elrad and Francez [1982] the subprograms [S1‖. . .‖Sn] and [T1‖. . .‖Tn] of S
are called layers of the parallel program T .

8.10 Bibliographic Remarks

As already mentioned, the approach to partial correctness and total correct-
ness followed here is due to Owicki and Gries [1976a] and is known as the
“Owicki/Gries method.” A similar proof technique was introduced indepen-
dently in Lamport [1977]. The presentation given here differs in the way total
correctness is handled. Our presentation follows Apt, de Boer and Olderog
[1990], in which the stronger formation rule for proof outlines for total cor-
rectness of while loops (formation rule (viii) given in Definition 8.3) was
introduced.

The Owicki/Gries method has been criticized because of its missing com-
positionality as shown by the global test of interference freedom. This mo-
tivated research on compositional semantics and proof methods for parallel
programs —see, for example, Brookes [1993] and de Boer [1994].

Atomic regions were considered by many authors, in particular Lipton
[1975], Lamport [1977] and Owicki [1978]. The Atomicity Theorem 8.1 and
the Initialization Theorem 8.2 presented in Section 8.7 are inspired by the
considerations of Lipton [1975].

A systematic derivation of a parallel program for zero search is presented
by Knapp [1992]. The derivation is carried out in the framework of UNITY.

The transformation of a layered program into a fully parallel program
presented in Exercise 8.14 is called the law of Communication Closed Layers
in Janssen, Poel and Zwiers [1991] and Fokkinga, Poel and Zwiers [1993]
and is the core of a method for developing parallel programs.
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F OR MANY APPLICATIONS the classes of parallel programs con-

sidered so far are not sufficient. We need parallel programs whose

components can synchronize with each other. That is, components must be

able to suspend their execution and wait or get blocked until the execution of

the other components has changed the shared variables in such a way that

a certain condition is fulfilled. To formulate such waiting conditions we ex-

tend the program syntax of Section 9.1 by a synchronization construct, the

await statement introduced in Owicki and Gries [1976a].

This construct permits a very flexible way of programming, but at the

same time opens the door for subtle programming errors where the program

execution ends in a deadlock. This is a situation where some components

of a parallel program did not terminate and all nonterminated components
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are blocked because they wait eternally for a certain condition to become

satisfied. The formal definition is given in Section 9.2 on semantics.

In this chapter we present a method of Owicki and Gries [1976a] for prov-

ing deadlock freedom. For a clear treatment of this verification method we

introduce in Section 9.3 besides the usual notions of partial and total correct-

ness an intermediate property called weak total correctness which guarantees

termination but not yet deadlock freedom.

As a first case study we prove in Section 9.4 the correctness of a typi-

cal synchronization problem: the consumer/producer problem. In Section 9.5

we consider another classical synchronization problem: the mutual exclusion

problem. We prove correctness of two solutions to this problem, one formu-

lated in the language without synchronization and another one in the full

language of parallel programs with synchronization.

In Section 9.6 we restate two program transformations of Section 8.7 in

the new setting where synchronization is allowed. These transformations are

used in the case study in Section 9.7 where we prove correctness of the zero

search program ZERO-6 from Chapter 1.
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9.1 Syntax

A component program is now a program generated by the same clauses as
those defining while programs in Chapter 3 together with the following
clause for await statements:

S ::= await B then S0 end,

where S0 is loop free and does not contain any await statements.
Thanks to this syntactic restriction no divergence or deadlock can occur

during the execution of S0, which significantly simplifies our analysis.
Parallel programs with synchronization (or simply parallel programs) are

then generated by the same clauses as those defining while programs, to-
gether with the usual clause for parallel composition:

S ::= [S1‖. . .‖Sn],

where S1, . . ., Sn are component programs (n > 1). Thus, as before, we do not
allow nested parallelism, but we do allow parallelism within sequential compo-
sition, conditional statements and while loops. Note that await statements
may appear only within the context of parallel composition.

Throughout this chapter the notions of a component program and a par-
allel program always refer to the above definition.

To explain the meaning of await statements, let us imagine an interleaved
execution of a parallel program where one component is about to execute a
statement await B then S end. If B evaluates to true, then S is executed
as an atomic region whose activation cannot be interrupted by the other
components. If B evaluates to false, the component gets blocked and the other
components take over the execution. If during their execution B becomes
true, the blocked component can resume its execution. Otherwise, it remains
blocked forever.

Thus await statements model conditional atomic regions. If B ≡ true, we
obtain the same effect as with an unconditional atomic region of Chapter 8.
Hence we identify

await true then S end ≡ 〈S〉.

As an abbreviation we also introduce

wait B ≡ await B then skip end.

For the extended syntax of this chapter, a subprogram of a program S is
called normal if it does not occur within an await statement of S.
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9.2 Semantics

The transition system for parallel programs with synchronization consists
of the axioms and rules (i)–(vii) introduced in Section 3.2, the interleaving
rule xvii introduced in Section 7.2 and the following transition rule:

(xix)
< S, σ > →∗ < E, τ >

< await B then S end, σ > → < E, τ >

where σ |= B.

This transition rule formalizes the intuitive meaning of conditional ato-
mic regions. If B evaluates to true, the statement await B then S end is
executed like an atomic region 〈S〉, with each terminating computation of
S reducing to an uninterruptible one-step computation of await B then S
end.

If B evaluates to false, the rule does not allow us to derive any transition
for await B then S end. In that case transitions of other components can
be executed. A deadlock arises if the program has not yet terminated, but
all nonterminated components are blocked. Formally, this amounts to saying
that no transition is possible.

Definition 9.1. Consider a parallel program S, a proper state σ and an
assertion p.

(i) A configuration < S, σ > is called deadlock if S 6≡ E and there is no
successor configuration of < S, σ > in the transition relation → .

(ii) The program S can deadlock from σ if there exists a computation of S
starting in σ and ending in a deadlock.

(iii) The program S is deadlock free (relative to p) if there is no state σ
(satisfying p) from which S can deadlock. ⊓⊔

Thus, for parallel programs with synchronization, there is no analogue to
the Absence of Blocking Lemma 8.1. Consequently, when started in a proper
state σ, a parallel program S can now terminate, diverge or deadlock. De-
pending on which of these outcomes is recorded, we distinguish three variants
of semantics:

• partial correctness semantics:

M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >},

• weak total correctness semantics:

Mwtot [[S]](σ) = M[[S]](σ) ∪ {⊥ | S can diverge from σ},



9.3 Verification 311

• total correctness semantics:

Mtot [[S]](σ) = Mwtot [[S]](σ) ∪ {∆ | S can deadlock from σ}.

As mentioned in Section 2.6, ∆ is one of the special states, in addition to ⊥
and fail, which can appear in the semantics of a program but which will never
satisfy an assertion. The new intermediate semantics Mwtot is not interesting
in itself, but it is useful when justifying proof rules for total correctness.

9.3 Verification

Each of the above three variants of semantics induces in the standard way
a corresponding notion of program correctness. For example, weak total cor-
rectness is defined as follows:

|=wtot {p} S {q} iff Mwtot [[S]]([[p]]) ⊆ [[q]].

First we deal with partial correctness.

Partial Correctness

For component programs, we use the proof rules of the system PW for
while programs plus the following proof rule given in Owicki and Gries
[1976a]:

RULE 28: SYNCHRONIZATION

{p ∧ B} S {q}

{p} await B then S end {q}

The soundness of the synchronization rule is an immediate consequence
of the transition rule (xix) defining the semantics of await statements. Note
that with B ≡ true we get the atomic region rule 26 as a special case.

Proof outlines for partial correctness of component programs are generated
by the same formation rules as those used for while programs together with
the following one:

(xii)
{p ∧ B} S∗ {q}

{p} await B then {p ∧ B} S∗ {q} end {q}

where S∗ stands for an annotated version of S.
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The definition of a standard proof outline is stated as in the previous
chapter, but it refers now to the extended notion of a normal subprogram
given in Section 9.1. Thus there are no assertions within await statements.

The connection between standard proof outlines and computations of com-
ponent programs can be stated analogously to the Strong Soundness for Com-
ponent Programs Lemma 8.5 and the Strong Soundness Theorem 3.3. We use
the notation at(T, S) introduced in Definition 3.7 but with the understand-
ing that T is a normal subprogram of a component program S. Note that no
additional clause dealing with await statements is needed in this definition.

Lemma 9.1. (Strong Soundness for Component Programs) Consider
a component program S with a standard proof outline {p} S∗ {q} for partial
correctness. Suppose that

< S, σ > →∗ < R, τ >

for a proper state σ satisfying p, a program R and a proper state τ . Then

• either R ≡ at(T, S) for some normal subprogram T of S and τ |= pre(T )
• or R ≡ E and τ |= q.

Proof. See Exercise 9.5. ⊓⊔

Interference freedom refers now to await statements instead of atomic
regions. Thus standard proof outlines {pi} S∗

i {qi}, i ∈ {1, . . . , n}, for
partial correctness are called interference free if no normal assignment or
await statement of a component program Si interferes (in the sense of the
previous chapter) with the proof outline of another component program Sj ,
i 6= j.

For parallel composition we use the parallelism with shared variables
rule 27 from the previous chapter but refer to the above notions of a standard
proof outline and interference freedom.

Summarizing, we use the following proof system PSY for partial correct-
ness of parallel programs with synchronization:

PROOF SYSTEM PSY :
This system consists of the group of axioms
and rules 1–6, 25, 27, 28 and A2–A6.

Example 9.1. We wish to prove the correctness formula

{x = 0} [await x = 1 then skip end‖x := 1] {x = 1}

in the proof system PSY. For its components we consider the following proof
outlines for partial correctness:

{x = 0 ∨ x = 1} await x = 1 then skip end {x = 1}
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and
{x = 0} x := 1 {x = 1}.

Interference freedom of the assertions in the first proof outline under the
execution of the assignment x := 1 is easy to check. In detail let us test the
assertions of the second proof outline. For the precondition x = 0 we have

{x = 0 ∧ (x = 0 ∨ x = 1)} await x = 1 then skip end {x = 0}

because by the synchronization rule 28 it suffices to show

{x = 0 ∧ (x = 0 ∨ x = 1) ∧ x = 1} skip {x = 0},

which holds trivially since its precondition is equivalent to false.
For the postcondition x = 1 we have

{x = 1 ∧ (x = 0 ∨ x = 1)} await x = 1 then skip end {x = 1},

because by the synchronization rule 28 it suffices to show

{x = 1 ∧ (x = 0 ∨ x = 1) ∧ x = 1} skip {x = 1},

which is obviously true. Thus the parallelism with shared variables rule 27 is
applicable and yields the desired result. ⊓⊔

Weak Total Correctness

The notion of a weak total correctness combines partial correctness with di-
vergence freedom. It is introduced only for component programs, and used as
a stepping stone towards total correctness of parallel programs. By definition,
a correctness formula {p} S {q} is true in the sense of weak total correctness
if

Mwtot [[S]]([[p]]) ⊆ [[q]]

holds. Since ⊥ 6∈ [[q]], every execution of S starting in a state satisfying p is
finite and thus either terminates in a state satisfying q or gets blocked.

Proving weak total correctness of component programs is simple. We use
the proof rules of the system TW for while programs and the synchronization
rule 28 when dealing with await statements. Note that the synchronization
rule is sound for weak total correctness but not for total correctness because
the execution of await B then S end does not terminate when started in
a state satisfying ¬B. Instead it gets blocked. This blocking can only be
resolved with the help of other components executed in parallel.

To prove total correctness of parallel programs with await statements we
need to consider interference free proof outlines for weak total correctness



314 9 Parallel Programs with Synchronization

of component programs. To define the proof outlines we proceed as in the
case of total correctness in Chapter 8 (see Definitions 8.2 and 8.3 and the
convention that follows the latter definition).

First we must ensure that await statements decrease or leave unchanged
the bound functions of while loops. To this end, we adapt Definition 8.2 of the
set path(S) for a component program S by replacing the clause path(〈S〉) =
{〈S〉} with

• path(await B then S end) = {await B then S end}.

With this change, (standard) proof outlines for weak total correctness of com-
ponent programs are defined by the same rules as those used for (standard)
proof outlines for total correctness in Definition 8.3 together with rule (xii)
dealing with await statements.

Standard proof outlines {pi} S∗
i {qi}, i ∈ {1, . . . , n}, for weak total cor-

rectness are called interference free if no normal assignment or await state-
ment of a component program Si interferes with the proof outline of another
component program Sj , i 6= j.

Total Correctness

Proving total correctness is now more complicated than in Chapter 8 because
in the presence of await statements program termination not only requires
divergence freedom (absence of infinite computations), but also deadlock free-
dom (absence of infinite blocking). Deadlock freedom is a global property
that can be proved only by examining all components of a parallel program
together. Thus none of the components of a terminating program need to
terminate when considered in isolation; each of them may get blocked (see
Example 9.2 below).

To prove total correctness of a parallel program, we first prove weak total
correctness of its components, and then establish deadlock freedom.

To prove deadlock freedom of a parallel program, we examine interfer-
ence free standard proof outlines for weak total correctness of its component
programs and use the following method of Owicki and Gries [1976a]:

1. Enumerate all potential deadlock situations.
2. Show that none of them can actually occur.

This method is sound because in the proof of the Deadlock Freedom
Lemma 9.5 below we show that every deadlock in the sense of Definition 9.1
is also a potential deadlock.

Definition 9.2. Consider a parallel program S ≡ [S1‖. . .‖Sn].

(i) A tuple (R1, . . ., Rn) of statements is called a potential deadlock of S if
the following two conditions hold:
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• For every i ∈ {1, . . . , n}, Ri is either an await statement in the com-
ponent Si or the symbol E which stands for the empty statement and
represents termination of Si,

• for some i ∈ {1, . . . , n}, Ri is an await statement in Si.

(ii) Given interference free standard proof outlines {pi} S∗
i {qi} for weak

total correctness, i ∈ {1, . . . , n}, we associate with every potential dead-
lock of S a corresponding tuple (r1, . . ., rn) of assertions by put-ting for
i ∈ {1, . . . , n}:

• ri ≡ pre(Ri) ∧ ¬B if Ri ≡ await B then S end,
• ri ≡ qi if Ri ≡ E. ⊓⊔

If we can show ¬
∧n

i=1 ri for every such tuple (r1, . . ., rn) of assertions,
none of the potential deadlocks can actually arise. This is how deadlock free-
dom is established in the second premise of the following proof rule for total
correctness of parallel programs.

RULE 29: PARALLELISM WITH DEADLOCK FREEDOM

(1) The standard proof outlines {pi} S∗
i {qi}, i ∈ {1, . . . , n}

for weak total correctness are interference free,
(2) For every potential deadlock (R1, . . ., Rn) of

[S1‖. . .‖Sn] the corresponding tuple of
assertions (r1, . . ., rn) satisfies ¬

∧n

i=1 ri.

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

To prove total correctness of parallel programs with synchronization, we use
the following proof system TSY :

PROOF SYSTEM TSY :
This system consists of the group of axioms
and rules 1–5, 7, 25, 28, 29 and A2–A6.

Proof outlines for parallel programs with synchronization are defined in a
straightforward manner (cf. Chapter 7).

The following example illustrates the use of rule 29 and demonstrates that
for the components of parallel programs we cannot prove in isolation more
than weak total correctness.

Example 9.2. We now wish to prove the correctness formula

{x = 0} [await x = 1 then skip end‖x := 1] {x = 1} (9.1)

of Example 9.1 in the proof system TSY. For the component programs we
use the following interference free standard proof outlines for weak total cor-
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rectness:

{x = 0 ∨ x = 1} await x = 1 then skip end {x = 1} (9.2)

and
{x = 0} x := 1 {x = 1}.

Formula (9.2) is proved using the synchronization rule 28; it is true only in the
sense of weak total correctness because the execution of the await statement
gets blocked when started in a state satisfying x = 0.

Deadlock freedom is proved as follows. The only potential deadlock is

(await x = 1 then skip end, E). (9.3)

The corresponding pair of assertions is

((x = 0 ∨ x = 1) ∧ x 6= 1, x = 1),

the conjunction of which is clearly false. This shows that deadlock cannot
arise. Rule 29 is now applicable and yields (9.1) as desired. ⊓⊔

Soundness

We now prove the soundness of PSY. Since we noted already the soundness
of the synchronization rule 28, we concentrate here on the soundness proofs
of the auxiliary variables rule 25 and the parallelism with shared variables
rule 27.

Lemma 9.2. (Auxiliary Variables) The auxiliary variables rule 25 is
sound for partial (and total) correctness of parallel programs with synchro-
nization.

Proof. See Exercise 9.6. ⊓⊔

To prove the soundness of the parallelism with shared variables rule 27 for
partial correctness of parallel programs with synchronization, we proceed as
in the case of parallel programs with shared variables in Chapter 8. Namely,
we first prove the following lemma analogous to the Strong Soundness for
Parallel Programs Lemma 8.8.

Lemma 9.3. (Strong Soundness for Parallel Programs with Syn-
chronization) Let {pi} S∗

i {qi}, i ∈ {1, . . . , n}, be interference free standard
proof outlines for partial correctness for component programs Si. Suppose that

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖Rn], τ >
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for some state σ satisfying
∧n

i=1 pi, some component programs Ri with i ∈
{1, . . . , n} and some state τ . Then for j ∈ {1, . . . , n}

• if Rj ≡ at(T, Sj) for a normal subprogram T of Sj, then τ |= pre(T ),
• if Rj ≡ E, then τ |= qj.

Proof. Fix j ∈ {1, . . . , n}. It is easy to show that either Rj ≡ at(T, Sj) for
a normal subprogram T of Sj or Rj ≡ E (see Exercise 9.4). In the first case
let r stand for pre(T ) and in the second case let r stand for qj . We need to
show τ |= r.

The proof is by induction on the length of the transition sequence con-
sidered in the formulation of the lemma, and proceeds analogously to the
proof of the Strong Soundness for Parallel Programs Lemma 8.8. We need
only to consider one more case in the induction step: the last transition of
the considered transition sequence is due to a step

< R′
k, τ ′ > → < Rk, τ > (9.4)

of the kth component executing an await statement, say await B then S
end. Then

R′
k ≡ at(await B then S end, Sk).

By the induction hypothesis τ ′ |= pre(await B then S end). Also by the
semantics of await statements τ ′ |= B. Two cases now arise.

Case 1 j = k.
By the definition of a proof outline, in particular formation rule (xii) for

the await statements, there exist assertions p and q and an annotated version
S∗ of S such that the following three properties hold:

pre(await B then S end) → p, (9.5)

{p ∧ B} S∗ {q} is a proof outline for partial correctness, (9.6)

q → r. (9.7)

Here r is the assertion associated with Rj and defined in the proof of the
Strong Soundness for Parallel Programs Lemma 8.8, so r ≡ pre(T ) if Rj ≡
at(T, Sj) for a normal subprogram T of Sj and r ≡ qj if Rj ≡ E.

Since τ ′ |= pre(await B then S end) ∧ B, by (9.5)

τ ′ |= p ∧ B. (9.8)

By (9.4)
< await B then S end, τ ′ > → < E, τ >,

so by the definition of semantics

< S′, τ ′ > →∗ < E, τ > . (9.9)
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Now by (9.6), (9.8) and (9.9), and by virtue of the Strong Soundness Theo-
rem 3.3 we get τ |= q. By (9.7) we conclude τ |= r.

Case 2 j 6= k.
The argument is the same as in the proof of the Strong Soundness for

Parallel Programs Lemma 8.8. ⊓⊔

Corollary 9.1. (Parallelism) The parallelism with shared variables rule 27
is sound for partial correctness of parallel programs with synchronization.

Corollary 9.2. (Soundness of PSY) The proof system PSY is sound for
partial correctness of parallel programs with synchronization.

Proof. We use the same argument as in the proof of the Soundness Corol-
lary 7.1. ⊓⊔

Next, we prove soundness of the proof system TSY for total correctness of
parallel programs with synchronization. We concentrate here on the sound-
ness proof of the new parallelism rule 29. To this end we establish the follow-
ing two lemmata. The first one is an analogue of Termination Lemma 8.9.

Lemma 9.4. (Divergence Freedom) Let {pi} S∗
i {qi}, i ∈ {1, . . . , n}, be

interference free standard proof outlines for weak total correctness for com-
ponent programs Si. Then

⊥ 6∈ Mtot [[[S1‖. . .‖Sn]]]([[
∧n

i=1 pi]]).

Proof. The proof is analogous to the proof of the Termination Lemma 8.9.
It relies now on the definition of proof outlines for weak total correctness
and the Strong Soundness for Component Programs Lemma 9.1 instead of
Definition 8.3 and the Strong Soundness for Parallel Programs Lemma 8.8.

Lemma 9.5. (Deadlock Freedom) Let {pi} S∗
i {qi}, i ∈ {1, . . . , n}, be

interference free standard proof outlines for partial correctness for compo-
nent programs Si. Suppose that for every potential deadlock (R1, . . ., Rn)
of [S1‖. . .‖Sn] the corresponding tuple of assertions (r1, . . ., rn) satisfies
¬

∧n
i=1 ri. Then

∆ 6∈ Mtot [[[S1‖. . .‖Sn]]]([[
∧n

i=1 pi]]).

Proof. Suppose that the converse holds. Then for some states σ and τ and
component programs T1, . . ., Tn

< [S1‖. . .‖Sn], σ > →∗ < [T1‖. . .‖Tn], τ >, (9.10)

where < [T1‖. . .‖Tn], τ > is a deadlock.
By the definition of deadlock,
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(i) for every i ∈ {1, . . . , n} either

Ti ≡ at(Ri, Si) (9.11)

for some await statement Ri in the component program Si, or

Ti ≡ E, (9.12)

(ii) for some i ∈ {1, . . . , n} case (9.11) holds.

By collecting the await statements Ri satisfying (9.11) and by defining
Ri ≡ E in case of (9.12), we obtain a potential deadlock (R1, . . ., Rn) of
[S1‖. . .‖Sn]. Consider now the corresponding tuple of assertions (r1, . . ., rn)
and fix some i ∈ {1, . . . , n}.

If Ri ≡ await B then S end for some B and S, then ri ≡ pre(Ri) ∧ ¬B.
By the Strong Soundness for Component Programs Lemma 9.1, (9.10) and
(9.11) we have τ |= pre(Ri). Moreover, since < [T1‖. . .‖Tn], τ > is a deadlock,
τ |= ¬B also. Thus τ |= ri.

If Ri ≡ E, then ri ≡ qi. By the Strong Soundness for Component Programs
Lemma 9.1, (9.10) and (9.11) we have τ |= ri, as well.

Thus τ |=
∧n

i=1 ri; so ¬
∧n

i=1 ri is not true. This is a contradiction. ⊓⊔

Corollary 9.3. (Parallelism) Rule 29 is sound for total correctness of par-
allel programs with synchronization.

Proof. Consider interference free standard proof outlines for weak total cor-
rectness for component programs. Then Lemma 9.4 applies. By removing
from each of these proof outlines all annotations referring to the bound func-
tions, we obtain interference free proof outlines for partial correctness. The
claim now follows from the Parallelism Corollary 9.1 and the Deadlock Free-
dom Lemma 9.5. ⊓⊔

Corollary 9.4. (Soundness of TSY) The proof system TSY is sound for
total correctness of parallel programs with synchronization.

Proof. We use the same argument as that in the proof of the Soundness
Corollary 7.1. ⊓⊔

9.4 Case Study: Producer/Consumer Problem

A recurring task in the area of parallel programming is the coordination of
producers and consumers. A producer generates a stream of M ≥ 1 values
for a consumer. We assume that the producer and consumer work in parallel
and proceed at a variable but roughly equal pace.
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The problem is to coordinate their work so that all values produced arrive
at the consumer and in the order of production. Moreover, the producer
should not have to wait with the production of a new value if the consumer
is momentarily slow with its consumption. Conversely, the consumer should
not have to wait if the producer is momentarily slow with its production.

The general idea of solving this producer/consumer problem is to interpose
a buffer between producer and consumer. Thus the producer adds values to
the buffer and the consumer removes values from the buffer. This way small
variations in the pace of producers are not noticeable to the consumer and
vice versa. However, since in reality the storage capacity of a buffer is limited,
say to N ≥ 1 values, we must synchronize producer and consumer in such a
way that the producer never attempts to add a value into the full buffer and
that the consumer never attempts to remove a value from the empty buffer.

Following Owicki and Gries [1976a], we express the producer/consumer
problem as a parallel program PC with shared variables and await state-
ments. The producer and consumer are modeled as two components PROD
and CONS of a parallel program. Production of a value is modeled as reading
an integer value from a finite section

a[0 : M − 1]

of an array a of type integer → integer and consumption of a value as
writing an integer value into a corresponding section

b[0 : M − 1]

of an array b of type integer → integer. The buffer is modeled as a section

buffer[0 : N − 1]

of a shared array buffer of type integer → integer. M and N are inte-
ger constants M,N ≥ 1. For a correct access of the buffer the components
PROD and CONS share an integer variable in counting the number of val-
ues added to the buffer and an integer variable out counting the number of
values removed from the buffer. Thus at each moment the buffer contains
in − out values; it is full if in − out = N and it is empty if in − out = 0.
Adding and removing values to and from the buffer is performed in a cyclic
order

buffer[0], . . ., buffer[N − 1], buffer[0], . . ., buffer[N − 1], buffer[0], . . . .

Thus the expressions in mod N and out mod N determine the subscript of
the buffer element where the next value is to be added or removed. This
explains why we start numbering the buffer elements from 0 onwards.

With these preparations we can express the producer/consumer problem
by the following parallel program:
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PC ≡ in := 0; out := 0; i := 0; j := 0; [PROD‖CONS],

where

PROD ≡ while i < M do
x := a[i];
ADD(x);
i := i + 1

od

and

CONS ≡ while j < M do
REM(y);
b[j] := y;
j := j + 1

od.

Here i, j, x, y are integer variables and ADD(x) and REM(y) abbreviate
the following synchronized statements for adding and removing values from
the shared buffer:

ADD(x) ≡ wait in − out < N ;
buffer[in mod N ] := x;
in := in + 1

and

REM(y) ≡ wait in − out > 0;
y := buffer[out mod N ];
out := out + 1.

Recall that for a Boolean expression B the statement wait B abbreviates
await B then skip end.

We claim the following total correctness property:

|=tot {true} PC {∀k : (0 ≤ k < M → a[k] = b[k])}, (9.13)

stating that the program PC is deadlock free and terminates with all values
from a[0 : M − 1] copied in that order into b[0 : M − 1]. The verification of
(9.13) follows closely the presentation in Owicki and Gries [1976a].

First consider the component program PROD. As a loop invariant we take

p1 ≡ ∀k : (out ≤ k < in → a[k] = buffer[k mod N ]) (9.14)
∧ 0 ≤ in − out ≤ N (9.15)
∧ 0 ≤ i ≤ M (9.16)
∧ i = in (9.17)
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and as a bound function
t1 ≡ M − i.

Further, we introduce the following abbreviation for the conjunction of some
of the lines in p1:

I ≡ (9.14) ∧ (9.15)

and
I1 ≡ (9.14) ∧ (9.15) ∧ (9.16).

As a standard proof outline we consider

{inv : p1}{bd : t1}
while i < M do

{p1 ∧ i < M}
x := a[i];
{p1 ∧ i < M ∧ x = a[i]}
wait in − out < N ;
{p1 ∧ i < M ∧ x = a[i] ∧ in − out < N}
buffer[in mod N ] := x;
{p1 ∧ i < M ∧ a[i] = buffer[in mod N ] ∧ in − out < N} (9.18)
in := in + 1;
{I1 ∧ i + 1 = in ∧ i < M} (9.19)
i := i + 1

od
{p1 ∧ i = M}.

Clearly, this is indeed a proof outline for weak total correctness of PROD.
In particular, note that (9.18) implies

∀k : (out ≤ k < in + 1 → a[k] = buffer[k mod N ]),

which justifies the conjunct (9.14) of the postcondition (9.19) of the assign-
ment in := in + 1. Note also that the bound function t1 clearly satisfies the
conditions required by the definition of proof outline.

Now consider the component program CONS. As a loop invariant we take

p2 ≡ I (9.20)
∧ ∀k : (0 ≤ k < j → a[k] = b[k]) (9.21)
∧ 0 ≤ j ≤ M (9.22)
∧ j = out, (9.23)

letting the I-part of p1 reappear here, and as a bound function we take

t2 ≡ M − j.

Let us abbreviate
I2 ≡ (9.20) ∧ (9.21) ∧ (9.22),

and consider the following standard proof outline:
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{inv : p2}{bd : t2}
while j < M do

{p2 ∧ j < M}
wait in − out > 0;
{p2 ∧ j < M ∧ in − out > 0}
y := buffer[out mod N ];
{p2 ∧ j < M ∧ in − out > 0 ∧ y = a[j]} (9.24)
out := out + 1;
{I2 ∧ j + 1 = out ∧ j < M ∧ y = a[j]}
b[j] := y;
{I2 ∧ j + 1 = out ∧ j < M ∧ a[j] = b[j]}
j := j + 1

od
{p2 ∧ j = M}.

Clearly, this is a correct proof outline for weak total correctness. In par-
ticular, the conjunct y = a[j] in the assertion (9.24) is obtained by not-
ing that y = buffer[out mod N ] is a postcondition for the assignment
y := buffer[out mod N ] and by calculating

buffer[out mod N ]

= {(14) ∧ in − out > 0}

a[out]

= {(23)}

a[j].

Also the bound function t2 satisfies the conditions required by the definition
of proof outline.

Let us now turn to the test of interference freedom of the two proof
outlines. Naive calculations suggest that 80 correctness formulas must be
checked! However, most of these checks can be dealt with by a single argu-
ment, that the I-part of p1 and p2 is kept invariant in both proof outlines. In
other words, all assignments T in the proof outlines for PROD and CONS
satisfy

{I ∧ pre(T )} T {I}.

It thus remains to check the assertions outside the I-part against possible in-
terference. Consider first the proof outline for PROD. Examine all conjuncts
occurring in the assertions used in this proof outline. Among them, apart
from I, only the conjunct in − out < N contains a variable that is changed
in the component CONS. But this change is done only by the assignment
out := out + 1. Obviously, we have here interference freedom:

{in − out < N} out := out + 1 {in − out < N}.
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Now consider the proof outline for CONS. Examine all conjuncts occurring
in the assertions used in this proof outline. Among them, apart from I, only
the conjunct in − out > 0 contains a variable that is changed in the compo-
nent PROD. But this change is done only by the assignment in := in + 1.
Obviously, we again have interference freedom:

{in − out > 0} in := in + 1 {in − out > 0}.

Next, we show deadlock freedom. The potential deadlocks are

(wait in − out < N,wait in − out > 0),
(wait in − out < N,E),
(E,wait in − out > 0),

and logical consequences of the corresponding pairs of assertions from the
above proof outlines are

(in − out ≥ N, in − out ≤ 0),
(in < M ∧ in − out ≥ N, out = M),
(in = M,out < M ∧ in − out ≤ 0).

Since N ≥ 1, the conjunction of the corresponding two assertions is false in
all three cases. This proves deadlock freedom.

We can now apply rule 29 for the parallel composition of PROD and
CONS and obtain

{p1 ∧ p2} [PROD‖CONS] {p1 ∧ p2 ∧ in = M ∧ j = M}.

Since
{true} in := 0; out := 0; i := 0; j := 0 {p1 ∧ p2}

and

p1 ∧ p2 ∧ i = M ∧ j = M →∀k : (0 ≤ k < M → a[k] = b[k]),

we obtain the desired correctness formula (9.13) about PC by straightforward
applications of the composition rule and the consequence rule.

9.5 Case Study: The Mutual Exclusion Problem

Problem Formulation

Another classical problem in parallel programming is mutual exclusion, first
investigated in Dijkstra [1968]. Consider n processes, n ≥ 2, running indefi-
nitely that share a resource, say a printer. The mutual exclusion problem is
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the task of synchronizing these processes in such a way that the following
two conditions are satisfied:

(i) mutual exclusion:
at any point of time at most one process uses the resource,

(ii) absence of blocking:
the imposed synchronization discipline does not prevent the processes
from running indefinitely,

(iii) individual accessibility:
if a process is trying to acquire the resource, eventually it will succeed.

Conditions (i) and (ii) are instances of a safety property whereas condition
(iii) is an instance of a liveness property. Intuitively, a safety property is a
condition that holds in every state in the computations of a program whereas
a liveness property is a condition that for all computations is eventually
satisfied. A formulation of condition (iii) in our proof theoretic framework is
possible but awkward (see Olderog and Apt [1988]). Therefore its treatment
is omitted in this book.

An appropriate framework for the treatment of liveness properties is tem-
poral logic (see Manna and Pnueli [1991,1995]). To this end, however, tem-
poral logic uses a more complex assertion language and more complex proof
principles.

To formalize conditions (i) and (ii) we assume that each process Si is an
eternal loop of the following form:

Si ≡ while true do
NCi;
ACQi;
CSi;
RELi

od,

where NCi (abbreviation for noncritical section) denotes a part of the pro-
gram in which process Si does not use the resource, ACQi (abbreviation for
acquire protocol) denotes the part of the program that process Si executes
to acquire the resource, CSi (abbreviation for critical section) denotes a loop
free part of the program in which process Si uses the resource and RELi (ab-
breviation for release protocol) denotes the part of the program that process
Si executes to release the resource. Additionally we assume that

(var(NCi) ∪ var(CSi)) ∩ (var(ACQj) ∪ var(RELj)) = ∅

for i, j ∈ {1, . . . , n} such that i 6= j; that is, the acquire and release protocols
use fresh variables. We also assume that no await statements are used inside
the sections NCi and CSi.

Then we consider a parallel program
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S ≡ INIT ; [S1‖. . .‖Sn],

where INIT is a loop free while program in which the variables used in the
acquire and release protocols are initialized.

Assume first that S is a parallel program without synchronization, that
is, a program in the language studied in Chapter 8. Then we can formalize
conditions (i) and (ii) as follows:

(a) mutual exclusion:
no configuration in a computation of S is of the form

< [R1‖. . .‖Rn], σ >,

where for some i, j ∈ {1, . . . , n}, i 6= j

Ri ≡ at(CSi, Si),

Rj ≡ at(CSj , Sj);

(b) absence of blocking:
no computation of S ends in a deadlock.

Note that in the case where S is a parallel program without synchroniza-
tion, condition (ii) is actually automatically satisfied, and in the case where
S is a parallel program with synchronization it indeed reduces to (b) due to
the syntactic form of S.

A trivial solution to the mutual exclusion problem would be to turn the
critical section CSi into an atomic region:

Si ≡ while true do
NCi;
〈CSi〉

od.

Here we have chosen ACQi ≡ “〈” and RELi ≡ “〉”. Of course, this choice
guarantees mutual exclusion because in a computation of S the ith component
of S can never be of the form Ri ≡ at(CSi, Si).

However, we are interested here in more realistic solutions in which ACQi

and RELi are implemented by more primitive programming constructs.

Verification

Conditions (a) and (b) refer to semantics. To verify them we propose proof
theoretic conditions that imply them. These conditions can then be estab-
lished by means of an axiomatic reasoning.
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To reason about the mutual exclusion condition (a) we use the following
lemma.

Lemma 9.6. (Mutual Exclusion) Suppose that for some assertions pi with
i ∈ {1, . . . , n}, {true} INIT {

∧n

i=1 pi} holds and {pi} S∗
i {false} for i ∈

{1, . . . , n} are interference free standard proof outlines for partial correctness
of the component programs Si such that

¬(pre(CSi) ∧ pre(CSj))

holds for i ∈ {1, . . . , n}, i 6= j. Then the mutual exclusion condition (a) is
satisfied for the parallel program S.

Proof. This is an immediate consequence of the Strong Soundness
Lemma 9.3. ⊓⊔

To reason about the absence of blocking condition (b) we use the Deadlock
Freedom Lemma 9.5. Also, we use auxiliary variables. The following lemma
allows us to do so.

Lemma 9.7. (Auxiliary Variables) Suppose that S′ is a parallel program
with or without synchronization, A is a set of auxiliary variables of S′ and S
is obtained from S′ by deleting all assignments to the variables in A.

(i) If S′ satisfies the mutual exclusion condition (a), then so does S.
(ii) If S′ is deadlock free relative to some assertion p, then so is S.

Proof. See Exercise 9.7. ⊓⊔

A Busy Wait Solution

First, let us consider the case of parallel programs without synchronization.
When the acquire protocol for each process Si for i ∈ {1, . . . , n} is of the
form

ACQi ≡ Ti; while ¬Bi do skip od,

where Ti is loop free, we call such a solution to the mutual exclusion problem
a busy wait solution and the loop while ¬Bi do skip od a busy wait loop.

We consider here the following simple busy wait solution to the mutual
exclusion problem for two processes due to Peterson [1981]. Let

MUTEX-B ≡ flag1 := false; flag2 := false; [S1‖S2],

where
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S1 ≡ while true do
NC1;
flag1 := true; turn := 1;
while ¬(flag2 → turn = 2) do skip od;
CS1;
flag1 := false

od

and

S2 ≡ while true do
NC2;
flag2 := true; turn := 2;
while ¬(flag1 → turn = 1) do skip od;
CS2;
flag2 := false

od.

Intuitively, the Boolean variable flagi indicates whether the component Si

intends to enter its critical section, i ∈ {1, 2}. The variable turn is used to
resolve simultaneity conflicts: in case both components S1 and S2 intend to
enter their critical sections, the component that set the variable turn first
is delayed in a busy wait loop until the other component alters the value of
turn. (Note that ¬(flagi → turn = i) is equivalent to flagi ∧ turn 6= i for
i ∈ {1, 2}).

To prove correctness of this solution we introduce two auxiliary variables,
after1 and after2, that serve to indicate whether in the acquire protocol of
Si (i ∈ {1, 2}) the control is after the assignment turn := i. Thus we consider
now the following extended program

MUTEX-B ′ ≡ flag1 := false; flag2 := false; [S′
1‖S

′
2],

where

S′
1 ≡ while true do

NC1;
〈flag1 := true; after1 := false〉;
〈turn := 1; after1 := true〉;
while ¬(flag2 → turn = 2) do skip od;
CS1;
flag1 := false

od

and

S′
2 ≡ while true do

NC2;
〈flag2 := true; after2 := false〉;
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〈turn := 2; after2 := true〉;
while ¬(flag1 → turn = 1) do skip od;
CS2;
flag2 := false

od.

With the help of the Mutual Exclusion Lemma 9.6 we prove now the
mutual exclusion condition (a) for the extended program MUTEX-B ′. To this
end we consider the following standard proof outlines for partial correctness
of the component programs S′

1 and S′
2 where we treat the parts NCi and

CSi as skip statements and use the abbreviation

I ≡ turn = 1 ∨ turn = 2.

{inv : ¬flag1}
while true do
{¬flag1}
NC1;
{¬flag1}
〈flag1 := true; after1 := false〉;
{flag1 ∧ ¬after1}
〈turn := 1; after1 := true〉;
{inv : flag1 ∧ after1 ∧ I}
while ¬(flag2 → turn = 2) do

{flag1 ∧ after1 ∧ I}
skip

od
{flag1 ∧ after1 ∧ (flag2 ∧ after2 → turn = 2)}
CS1;
{flag1}
flag1 := false

od
{false}

and

{inv : ¬flag2}
while true do
{¬flag2}
NC2;
{¬flag2}
〈flag2 := true; after2 := false〉;
{flag2 ∧ ¬after2}
〈turn := 2; after2 := true〉;
{inv : flag2 ∧ after2 ∧ I}
while ¬(flag1 → turn = 1) do

{flag2 ∧ after2 ∧ I}
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skip
od
{flag2 ∧ after2 ∧ (flag1 ∧ after1 → turn = 1)}
CS2;
{flag2}
flag2 := false

od
{false}.

First, let us check that these are indeed proof outlines for partial correct-
ness of S′

1 and S′
2. The only interesting parts are the busy wait loops. For the

busy wait loop in S′
1

{inv : flag1 ∧ after1 ∧ I}
while ¬(flag2 → turn = 2) do

{flag1 ∧ after1 ∧ I}
skip

od
{flag1 ∧ after1 ∧ I ∧ (flag2 → turn = 2)}

is a correct proof outline and so is

{inv : flag1 ∧ after1 ∧ I}
while ¬(flag2 → turn = 2) do

{flag1 ∧ after1 ∧ I}
skip

od
{flag1 ∧ after1 ∧ (flag2 ∧ after2 → turn = 2)},

because I ∧ (flag2 → turn = 2) trivially implies the conjunct

flag2 ∧ after2 → turn = 2.

A similar argument can be used for the busy wait loop in S′
2.

Next we show interference freedom of the above proof outlines. In the proof
outline for S′

1 only the assertion

pre(CS1) ≡ flag1 ∧ after1 ∧ (flag2 ∧ after2 → turn = 2)

can be invalidated by a statement from S′
2 because all other assertions contain

only variables that are local to S′
1 or the obviously interference-free conjunct

I. The only normal assignments or await statements of S′
2 that can invalidate

it are 〈flag2 := true; after2 := false〉 and 〈turn := 2; after2 := true〉.
Clearly both

{pre(CS1)} 〈flag2 := true; after2 := false〉 {pre(CS1)}

and
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{pre(CS1)} 〈turn := 2; after2 := true〉 {pre(CS1)}

hold. Thus no normal assignment or await statement of S′
2 interferes with

the proof outline for S′
1. By symmetry the same holds with S′

1 and S′
2 inter-

changed. This shows that the above proof outlines for S′
1 and S′

2 are inter-
ference free.

By the implication

pre(CS1) ∧ pre(CS2) → turn = 1 ∧ turn = 2,

we have
¬(pre(CS1) ∧ pre(CS2)).

Thus the Mutual Exclusion Lemma 9.6 yields the mutual exclusion condition
(a) for the extended parallel program MUTEX-B ′ and the Auxiliary Variables
Lemma 9.7 (i) for the original program MUTEX-B .

A Solution Using Semaphores

In this subsection we consider a solution to the mutual exclusion problem for
n processes due to Dijkstra [1968]. It uses the concept of a semaphore as a
synchronization primitive. A semaphore is a shared integer variable, say sem,
on which only the following operations are allowed:

• initialization: sem := k where k ≥ 0,
• P–operation: P (sem) ≡ await sem > 0 then sem := sem − 1 end,
• V –operation: V (sem) ≡ sem := sem + 1.

The letters P and V originate from the Dutch verbs “passeren” (to pass)
and “vrijgeven” (to free).

A binary semaphore is a semaphore that can take only two values: 0 and
1. To model a binary semaphore it is convenient to use a Boolean variable,
say out, and redefine the semaphore operations as follows:

• initialization: out := true,
• P–operation: P (out) ≡ await out then out := false end,
• V –operation: V (out) ≡ out := true.

The solution to the mutual exclusion problem using binary semaphores
has the following simple form:

MUTEX-S ≡ out := true; [S1‖. . .‖Sn]

where for i ∈ {1, . . . , n}
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Si ≡ while true do
NCi;
P (out);
CSi;
V (out)

od.

Intuitively, the binary semaphore out indicates whether all processes are out
of their critical sections.

To prove correctness of this solution, we have to prove the properties (a)
and (b). To this end, we introduce an auxiliary variable who that indicates
which component, if any, is inside the critical section. Thus we consider now
the following extended program

MUTEX-S ′ ≡ out := true; who := 0; [S′
1‖. . .‖S

′
n],

where for i ∈ {1, . . . , n}

S′
i ≡ while true do

NCi;
await out then out := false; who := i end;
CSi;
〈out := true; who := 0〉

od.

Note that the binary P - and V -operations have been extended to atomic
actions embracing assignment to the auxiliary variable who.

For the component programs S′
i for i ∈ {1, . . . , n} we use the assertion

I ≡ (

n∨

j=0

who = j) ∧ (who = 0 ↔ out)

in the following standard proof outlines for partial correctness:

{inv : who 6= i ∧ I}
while true do
{who 6= i ∧ I}
NCi;
{who 6= i ∧ I}
await out then out := false; who := i end;
{¬out ∧ who = i}
CSi;
{¬out ∧ who = i}
〈out := true; who := 0〉

od
{false}.
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Considered in isolation these are correct proof outlines. We now prove their
interference freedom. First we consider the assertion who 6= i ∧ I occurring
three times in the proof outline of S′

i. This assertion is kept invariant under
both the extended P -operation

await out then out := false; who := i end

and the V -operation
〈out := true; who := 0〉

from any S′
j with i 6= j. Next we consider the assertion ¬out ∧ who = i

occurring twice in S′
i. To show that this assertion is kept invariant under

the extended P -operation, we consider the body of this await statement. We
have

{¬out ∧ who = i ∧ out}
{false}
out := false; who := j
{false}
{¬out ∧ who = i};

so by the synchronization rule 28

{¬out ∧ who = i ∧ true}
await out then out := false; who := j end
{¬out ∧ who = i}.

For the extended V -operation 〈out := true; who := 0〉 from S′
j with i 6= j

the atomic region rule 26 (as a special case of the synchronization rule 28)
yields

{¬out ∧ who = i ∧ ¬out ∧ who = j}
{false}
out := true; who := 0
{false}
{¬out ∧ who = i}.

This finishes the proof of interference freedom.
To prove the mutual exclusion condition (a) note that for i, j ∈ {1, . . . , n}

such that i 6= j

pre(CSi) ∧ pre(CSj) → who = i ∧ who = j;

so
¬(pre(CSi) ∧ pre(CSj))

holds. It suffices now to apply the Mutual Exclusion Lemma 9.6 and the
Auxiliary Variables Lemma 9.7(i).
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Finally, we prove the absence of blocking condition (b), thus showing that
MUTEX-S is deadlock free. To this end, we investigate the potential dead-
locks of MUTEX-S ′ and the corresponding tuple of assertions (r1, . . ., rn).
We need to show that ¬

∧n

i=1 ri holds. Because of the form of the postcondi-
tions of S′′

i for i ∈ {1, . . . , n} it suffices to consider the case where each ri is
associated with the precondition of the await statement of S′

i, that is, where
for i ∈ {1, . . . , n}

ri ≡ who 6= i ∧ I ∧ ¬out.

By the form of I,

(

n∧

i=1

ri) → who = 0 ∧ (who = 0 ↔ out) ∧ ¬out,

so

¬
n∧

i=1

ri

indeed holds. By virtue of the Deadlock Freedom Lemma 9.5 this proves
deadlock freedom of MUTEX-S ′ and the deadlock freedom of MUTEX-S
now follows by the Auxiliary Variables Lemma 9.7(ii).

9.6 Allowing More Points of Interference

As in Chapter 8 we can apply program transformations to parallel programs
with synchronization. These transformations are the same as in Section 8.7
and as before can be used in two ways. First, they allow us to derive from a
parallel program another parallel program with more points of interference.
Second, they can be used to simplify a correctness proof of a parallel program
by applying them in a reverse direction. In the next section we illustrate the
second use of them.

Theorem 9.1. (Atomicity) Consider a parallel program with synchroniza-
tion of the form S ≡ S0; [S1‖. . .‖Sn] where S0 is a while program. Let T
result from S by replacing in one of its components, say Si with i > 0, either

• an atomic region 〈R1; R2〉 where one of the Rls is disjoint from all com-
ponents Sj with j 6= i by

〈R1〉; 〈R2〉

or

• an atomic region 〈if B then R1 else R2 fi〉 where B is disjoint from all
components Sj with j 6= i by

if B then 〈R1〉 else 〈R2〉 fi.
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Then the semantics of S and T agree; that is,

M[[S]] = M[[T ]] and Mtot [[S]] = Mtot [[T ]].

Proof. See Exercise 9.9. ⊓⊔

Corollary 9.5. (Atomicity) Under the assumptions of the Atomicity The-
orem 9.1, for all assertions p and q

|= {p} S {q} iff |= {p} T {q}

and analogously for |=tot .

Theorem 9.2. (Initialization) Consider a parallel program with synchro-
nization of the form

S ≡ S0; R0; [S1‖. . .‖Sn],

where S0 and R0 are while programs. Suppose that for some i ∈ {1, . . . , n}
the initialization part R0 is disjoint from all component programs Sj with
j 6= i. Then the program

T ≡ S0; [S1‖. . .‖R0; Si‖. . .‖Sn]

has the same semantics as S; that is,

M[[S]] = M[[T ]] and Mtot [[S]] = Mtot [[T ]].

Proof. See Exercise 9.10. ⊓⊔

Corollary 9.6. (Initialization) Under the assumptions of the Initialization
Theorem 9.2, for all assertions p and q

|= {p} S {q} iff |= {p} T {q}

and analogously for |=tot .

9.7 Case Study: Synchronized Zero Search

We wish to prove the correctness of Solution 6 to the zero search problem
given in Section 1.1. That is, we wish to prove that due to the incorporated
synchronization constructs the parallel program

ZERO-6 ≡ turn := 1; found := false; [S1‖S2]

with



336 9 Parallel Programs with Synchronization

S1 ≡ x := 0;
while ¬found do

wait turn = 1;
turn := 2;
x := x + 1;
if f(x) = 0 then found := true fi

od;
turn := 2

and

S2 ≡ y := 1;
while ¬found do

wait turn = 2;
turn := 1;
y := y − 1;
if f(y) = 0 then found := true fi

od;
turn := 1

finds a zero of the function f provided such a zero exists:

|=tot {∃u : f(u) = 0} ZERO-6 {f(x) = 0 ∨ f(y) = 0}. (9.25)

As in the Case Study of Section 8.8 we proceed in four steps.

Step 1. Simplifying the Program

We apply the Atomicity Corollary 9.5 and Initialization Corollary 9.6 to
reduce the original problem (9.25) to the following claim

|=tot {∃u : f(u) = 0} T {f(x) = 0 ∨ f(y) = 0}, (9.26)

where

T ≡ turn := 1; found := false;
x := 0; y := 1;
[T1‖T2]

with

T1 ≡ while ¬found do
wait turn = 1;
turn := 2;
〈 x := x + 1;
if f(x) = 0 then found := true fi〉
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od;
turn := 2

and

T2 ≡ while ¬found do
wait turn = 2;
turn := 1;
〈 y := y − 1;
if f(y) = 0 then found := true fi〉

od;
turn := 1.

Both corollaries are applicable here because x does not appear in S2 and y
does not appear in S1.

Step 2. Decomposing Total Correctness

To prove (9.26) we use the fact that total correctness can be decomposed
into termination and partial correctness. More precisely we use the following
observation.

Lemma 9.8. (Decomposition) For all programs R and all assertions p and
q

|=tot {p} R {q} iff |=tot {p} R {true} and |= {p} R {q}.

Proof. By the definition of total and partial correctness. ⊓⊔

Thus to prove (9.26) it suffices to prove

|=tot {∃u : f(u) = 0} T {true} (9.27)

and
|= {∃u : f(u) = 0} T {f(x) = 0 ∨ f(y) = 0}. (9.28)

Step 3. Proving Termination

We prove (9.27) in the proof system TSY for total correctness introduced in
Section 9.3. To prove deadlock freedom we need two Boolean auxiliary vari-
ables after1 and after2 to indicate whether the execution of the component
programs T1 and T2 is just after one of the assignments to the variable turn.
Thus instead of T we consider the augmented program
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U ≡ turn := 1; found := false;
x := 0; y := 1;
after1 := false; after2 := false;
[U1‖U2]

with

U1 ≡ while ¬found do
wait turn = 1;
〈turn := 2; after1 := true〉;
〈 x := x + 1;
if f(x) = 0 then found := true fi;
after1 := false〉

od;
〈turn := 2; after1 := true〉

and

U2 ≡ while ¬found do
wait turn = 2;
〈turn := 1; after2 := true〉;
〈 y := y − 1;
if f(y) = 0 then found := true fi;
after2 := false〉

od;
〈turn := 1; after2 := true〉.

The rule of auxiliary variables (rule 25) is sound for total correctness of par-
allel programs with synchronization (see the Auxiliary Variables Lemma 9.2);
so to prove (9.27) it suffices to prove

|=tot {∃u : f(u) = 0} U {true}. (9.29)

To prove (9.29) we first deal with the case of a positive zero u of f :

|=tot {f(u) = 0 ∧ u > 0} U {true}. (9.30)

In this case the component U1 of U is responsible for finding the zero. This
observation is made precise in the proof outlines for weak total correctness
of the component programs U1 and U2. For U1 we take as a loop invariant

p1 ≡ f(u) = 0 ∧ u > 0 ∧ x ≤ u (9.31)
∧ (turn = 1 ∨ turn = 2) (9.32)
∧ (¬found → x < u) (9.33)
∧ ¬after1 (9.34)

and as a bound function
t1 ≡ u − x.
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Let us abbreviate the first two lines in p1:

I1 ≡ (9.31) ∧ (9.32).

Then we consider the following standard proof outline for U1:

{inv : p1}{bd : t1}
while ¬found do
{I1 ∧ (found ∧ after2 → turn = 1) (9.35)

∧ x < u ∧ ¬after1 }
wait turn = 1;
{I1 ∧ x < u ∧ ¬after1}
〈turn := 2; after1 := true〉
{I1 ∧ x < u ∧ after1}
〈 x := x + 1;
if f(x) = 0 then found := true fi;
after1 := false〉

od;
{found ∧ (turn = 1 ∨ turn = 2) ∧ ¬after1}
〈turn := 2; after1 := true〉
{found ∧ after1}.

It is easy to check that this is indeed a proof outline for weak total cor-
rectness of U1. In particular, note that p1 ∧ ¬found trivially implies the
conjunct

found ∧ after2 → turn = 1 (9.36)

in assertion (9.35). This conjunct is crucial for showing deadlock freedom
below. Note also that the bound function t1 clearly satisfies the conditions
required by the definition of proof outline.

Now consider the component program U2. As a loop invariant we simply
take

p2 ≡ x ≤ u (9.37)
∧ (turn = 1 ∨ turn = 2) (9.32)
∧ ¬after2, (9.38)

but as a bound function we need to take

t2 ≡ turn + int(¬after1) + u − x.

For U2 considered in isolation, the variable turn would suffice as a bound
function, but when U2 is considered in parallel with U1 the remaining sum-
mands of t2 are needed to achieve interference freedom. Let us abbreviate

I2 ≡ (9.37) ∧ (9.32)

and consider the following standard proof outline for U2:
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{inv : p2}{bd : t2}
while ¬found do
{I2 ∧ (found ∧ after1 → turn = 2) ∧ ¬after2}
wait turn = 2;
{I2 ∧ ¬after2}
〈turn := 1; after2 := true〉
{I2 ∧ after2}
〈 y := y − 1;
if f(y) = 0 then found := true fi;
after2 := false〉

od;
{found}
〈turn := 1; after2 := true〉
{found ∧ after2}.

Clearly, this is indeed a proof outline for weak total correctness of U2. In
particular, note that the bound function t2 satisfies

p2 → t2 ≥ 0

and that it is decreased along every syntactically possible path through the
loop in U2 because the variable turn drops from 2 to 1.

Let us now check the two proof outlines for interference freedom. In total
we have to check 64 correctness formulas. However, a careful inspection of
the proof outlines shows that only a few parts of the assertions and bound
functions of each proof outline contain variables that can be modified by the
other component. For the proof outline of U1 there are the conjuncts

turn = 1 ∨ turn = 2, (9.32)
¬found → x < u, (9.33)
found ∧ after2 → turn = 1. (9.36)

Conjunct (9.32) is obviously preserved under the execution of the statements
in U2. Conjunct (9.33) is preserved because the only way U2 can modify the
variable found is by changing its value from false to true. With found eval-
uating to true, conjunct (9.33) is trivially satisfied. Finally, conjunct (9.36) is
preserved because, by the proof outline of U2, whenever the variable after2

is set to true, the variable turn is simultaneously set to 1.
For the proof outline of U2, only the conjuncts

turn = 1 ∨ turn = 2, (9.32)
found ∧ after1 → turn = 2 (9.39)

and the bound function

t2 ≡ turn + int(¬after1) + u − x
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contain variables that can be modified by U1. Conjuncts (9.32) and (9.39)
are dealt with analogously to the conjuncts (9.32) and (9.36) from the proof
outline of U1. Thus it remains to show that none of the atomic regions in
U1 can increase the value of t2. This amounts to checking the following two
correctness formulas:

{(turn = 1 ∨ turn = 2) ∧ ¬after1 ∧ t2 = z}
〈turn := 2; after1 := true〉
{t2 ≤ z}

and

{after1 ∧ t2 = z}
〈 x := x + 1;
if f(x) = 0 then found := true fi;
after1 := false〉

{t2 ≤ z}.

Both correctness formulas are clearly true. This completes the proof of inter-
ference freedom.

Next, we show deadlock freedom. The potential deadlocks are

(wait turn = 1,wait turn = 2),
(wait turn = 1,E),
(E,wait turn = 2),

and logical consequences of the corresponding pairs of assertions from the
above proof outlines are

((turn = 1 ∨ turn = 2) ∧ turn 6= 1, turn 6= 2),
((found ∧ after2 → turn = 1) ∧ turn 6= 1, found ∧ after2),
(found ∧ after1, (found ∧ after1 → turn = 2) ∧ turn 6= 2).

Obviously, the conjunction of the corresponding two assertions is false in all
three cases. This proves deadlock freedom.

Thus we can apply rule 29 for the parallel composition of U1 and U2 and
obtain

{p1 ∧ p2} [U1‖U2] {found ∧ after1 ∧ after2}.

Since

{f(u) = 0 ∧ u > 0}
turn := 1; found := false;
x := 0; y := 1;
after1 := false; after2 := false;
{p1 ∧ p2}

and
found ∧ after1 ∧ after2 → true,
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we obtain the statement (9.30) about U by virtue of the soundness of the
composition rule and of the consequence rule.

For the case in which f has a zero u ≤ 0 we must prove

|=tot {f(u) = 0 ∧ u ≤ 0} U {true}. (9.40)

Instead of the component U1, now the component U2 of U is responsible
for finding a zero. Hence the proof of (9.40) in the system TSY is entirely
symmetric to that of (9.30) and is therefore omitted.

Finally, we combine the results (9.30) and (9.40). By the soundness of the
disjunction rule (rule A3) and of the consequence rule, we obtain

|=tot {f(u) = 0} U {true}.

Final application of the ∃-introduction rule (rule A5) yields the desired ter-
mination result (9.29) for U .

Step 4. Proving Partial Correctness

Finally, we prove (9.28) in the proof system PSY for partial correctness in-
troduced in Section 9.3. We have isolated this step because we can reuse here
the argument given in Step 4 of the Case Study of Section 8.8. Indeed, to
construct interference free proof outlines for partial correctness of the com-
ponent programs T1 and T2 of T , we reuse the invariants p1 and p2 given
there:

p1 ≡ x ≥ 0
∧ (found → (x > 0 ∧ f(x) = 0) ∨ (y ≤ 0 ∧ f(y) = 0))
∧ (¬found ∧ x > 0 → f(x) 6= 0)

and

p2 ≡ y ≤ 1
∧ (found → (x > 0 ∧ f(x) = 0) ∨ (y ≤ 0 ∧ f(y) = 0))
∧ (¬found ∧ y ≤ 0 → f(y) 6= 0).

The intuition behind these invariants was explained in Step 4 of Section 8.8.
For convenience let us introduce names for two other assertions appearing in
the proof outlines of Section 8.8:

r1 ≡ x ≥ 0 ∧ (found → y ≤ 0 ∧ f(y) = 0)
∧ (x > 0 → f(x) 6= 0)

and

r2 ≡ y ≤ 1 ∧ (found → x > 0 ∧ f(x) = 0)
∧ (y ≤ 0 → f(y) 6= 0).
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From Section 8.8 we now “lift” the standard proof outlines to the present
programs T1 and T2. Since the variable turn does not occur in the asser-
tions used in the proof outlines in Section 8.8, any statement accessing turn
preserves these assertions.
Thus for T1 we consider now the standard proof outline

{inv : p1}
while ¬found do
{r1}
wait turn = 1;
{r1}
turn := 2;
{r1}
〈 x := x + 1;
if f(x) = 0 then found := true fi〉

od;
{p1 ∧ found}
turn := 2
{p1 ∧ found}

and similarly for T2 the standard proof outline

{inv : p2}
while ¬found do
{r2}
wait turn = 2;
{r2}
turn := 1;
{r2}
〈 y := y − 1;
if f(y) = 0 then found := true fi〉

od;
{p2 ∧ found}
turn := 1
{p2 ∧ found}.

From Section 8.8 we can also lift the test of interference freedom to the
present proof outlines. Indeed, consider any of the correctness formulas to be
checked for this test. Either it has already been checked in Section 8.8, for
example,

{r1 ∧ r2}
〈 y := y − 1;
if f(y) = 0 then found := true fi〉

{r1},

or it trivially holds because only the variable turn, which does not occur in
any of the assertions, is modified.
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Thus we can apply rule 27 to the parallel composition of T1 and T2 and
obtain

{p1 ∧ p2} [T1‖T2] {p1 ∧ p2 ∧ found}.

From this correctness formula proving the desired partial correctness result
(9.28) is straightforward.

This concludes the proof of (9.25).

9.8 Exercises

9.1. Prove the Input/Output Lemma 3.3 for parallel programs with synchro-
nization.

9.2. Prove the Change and Access Lemma 3.4 for parallel programs with
synchronization.

9.3. Prove the Stuttering Lemma 7.9 for parallel programs with synchroniza-
tion.

9.4. Suppose that

< [S1‖. . .‖Sn], σ > →∗ < [R1‖. . .‖Rn], τ > .

Prove that for j ∈ {1, . . . , n} either Rj ≡ E or Rj ≡ at(T, Sj) for a normal
subprogram T of Sj .
Hint. See Exercise 3.13.

9.5. Prove the Strong Soundness for Component Programs Lemma 9.1.
Hint. See the proof of the Strong Soundness for Component Programs
Lemma 8.5.

9.6. Prove the Auxiliary Variables Lemma 9.2.
Hint. Use Exercise 9.3.

9.7. Prove the Auxiliary Variables Lemma 9.7.
Hint. See the proof of the Auxiliary Variables Lemma 7.10.

9.8. Consider the following solution to the producer/consumer problem in
which the synchronization is achieved by means of semaphores:

PC ′ ≡ full := 0; empty := N ; i := 0; j := 0; [PROD′‖CONS′],

where

PROD′ ≡ while i < M do
x := a[i];
P (empty);
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buffer[i mod N ] := x;
V (full);
i := i + 1

od

and

CONS′ ≡ while j < M do
P (full);
y := buffer[j mod N ];
V (empty);
b[j] := y;
j := j + 1

od.

Prove that

|=tot {true} PC ′ {∀k : (0 ≤ k < M → a[k] = b[k])}.

9.9. Prove the Atomicity Theorem 9.1.
Hint. Modify the proof of the Atomicity Theorem 8.1.

9.10. Prove the Initialization Theorem 9.2.

9.11. Consider the programs ZERO-5 and ZERO-6 of Section 1.1. Show
that the total correctness of ZERO-6 as proven in Case Study 9.7 implies
total correctness of ZERO-5.

9.9 Bibliographic Remarks

As already mentioned, this chapter owes much to Owicki and Gries [1976a]:
the idea of modeling synchronization by await statements, the approach to
proving deadlock freedom and the solution to the producer/consumer prob-
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the proof rule for parallelism with deadlock freedom. Schneider and Andrews
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the method of Owicki and Gries.

Nipkow and Nieto [1999] formalized the method of Owicki and Gries in
the interactive theorem prover Isabelle/HOL introduced by Nipkow, Paulson
and Wenzel [2002], which is based on higher-order logic. More precisely, they
formalize syntax, semantics, and proof rules for partial correctness of parallel
programs as discussed in this chapter (essentially the proof system PSY ).
They proved soundness of the proof rules and verified a number of exam-
ples including the producer/consumer case study in Isabelle/HOL, using the
tactics of that theorem prover.
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Balser [2006] formalized parallel programs with synchronization and their
verification on the basis of dynamic logic in the KIV system, see Balser et al.
[2000]. His approach combines symbolic execution of the operational seman-
tics of the programs with induction.

The await statement is a more flexible and structured synchronization
construct than the classical semaphore introduced in Dijkstra [1968]. How-
ever, the price is its inefficiency when implemented directly —during its ex-
ecution by one component of a parallel program all other components need
to be suspended.

In Hoare [1972] a more efficient synchronization construct called condi-
tional critical region is introduced. In Owicki and Gries [1976b] a proof theory
to verify parallel programs using conditional regions is proposed.

Several other solutions to the producer/consumer problem and the mu-
tual exclusion problem are analyzed in Ben-Ari [1990]. More solutions to the
mutual exclusion problem are discussed in Raynal [1986].

The Atomicity and the Initialization Theorems stated in Section 9.6 are
—as are their counterparts in Chapter 8— inspired by Lipton [1975].
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I N THE PREVIOUS chapters we have seen that parallel programs intro-

duce nondeterminism: from a given initial state several computations

resulting in different final states may be possible. This nondeterminism is

implicit; that is, there is no explicit programming construct for expressing it.

In this chapter we introduce a class of programs that enable an explicit

description of nondeterminism. This is the class of Dijkstra’s [1975,1976]

guarded commands; it represents a simple extension of while programs con-

sidered in Chapter 3. Dijkstra’s guarded commands are also a preparation

for the study of distributed programs in Chapter 11.

In Section 10.1 we introduce the syntax and in Section 10.2 the semantics

of the nondeterministic programs. In Section 10.3 we discuss the advantages

of this language. As we are going to see, nondeterministic program constructs

have the advantage that they allow us to avoid a too detailed description or

overspecification of the intended computations.

349
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Verification of nondeterministic programs is considered in Section 10.4;

the proof rules are a simple modification of the corresponding rules for while

programs introduced in Chapter 3. In Section 10.5 we return to an approach

originated by Dijkstra [1976], and first explained in Section 3.10, allowing us

to develop programs together with their correctness proofs. We extend this

approach to nondeterministic programs and illustrate it by the case study of

a welfare crook program.

Finally, in Section 10.6 we study transformation of parallel programs into

nondeterministic programs.
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10.1 Syntax

We expand the grammar for while programs by adding for each n ≥ 1 the
following production rules:

• if command or alternative command

S ::= if B1 → S1⊓⊔. . .⊓⊔Bn → Sn fi,

• do command or repetitive command

S ::= do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od.

These new commands are also written as

if ⊓⊔n
i=1 Bi → Si fi and do ⊓⊔n

i=1 Bi → Si od,

respectively. A Boolean expression Bi within S is called a guard and a com-
mand Si within S is said to be guarded by Bi. Therefore the construct Bi → Si

is called a guarded command.
The symbol ¤ represents a nondeterministic choice between guarded com-

mands Bi → Si. More precisely, in the context of an alternative command

if B1 → S1⊓⊔. . .⊓⊔Bn → Sn fi

a guarded command Bi → Si can be chosen only if its guard Bi evaluates to
true; then Si remains to be executed. If more than one guard Bi evaluates
to true any of the corresponding statements Si may be executed next. There
is no rule saying which statement should be selected. If all guards evaluate
to false, the alternative command will signal a failure. So the alternative
command is a generalization of the failure statement that we considered in
Section 3.7.

The selection of guarded commands in the context of a repetitive command

do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od

is performed in a similar way. The difference is that after termination of a
selected statement Si the whole command is repeated starting with a new
evaluation of the guards Bi. Moreover, contrary to the alternative command,
the repetitive command properly terminates when all guards evaluate to false.

We call the programs generated by this grammar nondeterministic pro-
grams.
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10.2 Semantics

Again we wish to support this intuitive explanation of meaning of nonde-
terministic programs by a precise operational semantics. First, we expand
the transition system for while programs by the following transition axioms,
where σ is a proper state:

(xx) < if ⊓⊔n
i=1 Bi → Si fi, σ > → < Si, σ >

where σ |= Bi and i ∈ {1, . . . , n},

(xxi) < if ⊓⊔n
i=1 Bi → Si fi, σ > → < E, fail > where σ |=

∧n

i=1 ¬Bi,

(xxii) < do ⊓⊔n
i=1 Bi → Si od, σ > → < Si; do ⊓⊔n

i=1 Bi → Si od, σ >

where σ |= Bi and i ∈ {1, . . . , n},

(xxiii)< do ⊓⊔n
i=1 Bi → Si od, σ > → < E, σ > where σ |=

∧n

i=1 ¬Bi.

Here fail is an exceptional state, originally considered in Section 3.7 in the
context of the semantics of the failure statement, that represents a runtime
detectable failure or abortion. For a nondeterministic program S a transition

< S, σ > → < R, τ >

is possible if and only if it is deducible in the extended transition system.
Note that as in in Section 3.7 configurations of the form < S, fail > have no
successor in the transition relation → .

As before, the semantics M[[S]] of nondeterministic programs S is based
on the transition relation → , but it now maps proper initial states into
sets possibly containing several final states. So, as in the case of the failure
admitting programs considered in Section 3.7 we consider the following two
semantics, where σ is a proper state:

• partial correctness semantics:

M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >},

• total correctness semantics:

Mtot [[S]](σ) = M[[S]](σ)
∪ {⊥ | S can diverge from σ}
∪ {fail | S can fail from σ}.
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Properties of Semantics

However, we now admit nondeterminism. So, in contrast to Section 3.7, both
the partial correctness semantics M[[S]](σ) and the total correctness seman-
tics Mtot [[S]](σ) can yield more than one outcome. But, as with the parallel
programs of Chapters 8 and 9, the nondeterminism is bounded for the class
of nondeterministic programs studied in this chapter.

Lemma 10.1. (Bounded Nondeterminism) Let S be a nondeterministic
program and σ a proper state. Then Mtot [[S]](σ) is either finite or it contains
⊥.

Proof. For nondeterministic programs S each configuration < S, σ > has
only finitely many successors in the transition relation → , so we can apply
again König’s Lemma 8.4. ⊓⊔

Note that the conventional conditionals and loops can be modeled by al-
ternative and repetitive commands.

Lemma 10.2. (Correspondence)

(i) Mtot [[if B then S1 else S2 fi]] = Mtot [[if B → S1¤¬B → S2 fi]],
(ii) Mtot [[while B do S od]] = Mtot [[do B → S od]]. ⊓⊔

Therefore, we shall identify from now on:

if B then S1 else S2 fi ≡ if B → S1¤¬B → S2 fi

and
while B do S od ≡ do B → S od.

As in Chapter 3 we can express the semantics of loops by the semantics
of their syntactic approximations. Let Ω be a nondeterministic program such
that M[[Ω]](σ) = ∅ holds for all proper states σ. We define by induction
on k ≥ 0 the kth syntactic approximation of a loop do ⊓⊔n

i=1 Bi → Si od as
follows:

(do ⊓⊔n
i=1 Bi → Si od)0 = Ω,

(do ⊓⊔n
i=1 Bi → Si od)k+1 = if ¤n

i=1 Bi → Si; (do ⊓⊔n
i=1 Bi → Si od)k

¤
∧n

i=1 ¬Bi → skip
fi.

The above if command has n + 1 guarded commands where the last one
models the case of termination.

Let N stand for M or Mtot . We extend N to deal with the error states
⊥ and fail by

M[[S]](⊥) = M[[S]](fail) = ∅
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and
Mtot [[S]](⊥) = {⊥} and Mtot [[S]](fail) = {fail}

and to deal with sets X ⊆ Σ ∪ {⊥} ∪ {fail} by

N [[S]](X) =
⋃

σ∈X

N [[S]](σ).

The following lemmata are counterparts of the Input/Output Lemma 3.3
and the Change and Access Lemma 3.4, now formulated for nondeterministic
programs.

Lemma 10.3. (Input/Output)

(i) N [[S]] is monotonic; that is, X ⊆ Y ⊆ Σ ∪ {⊥} implies
N [[S]](X) ⊆N [[S]](Y ).

(ii) N [[S1; S2]](X) = N [[S2]](N [[S1]](X)).

(iii) N [[(S1; S2); S3]](X) = N [[S1; (S2; S3)]](X).

(iv) M[[if ⊓⊔n
i=1 Bi → Si fi]](X) = ∪n

i=1 M[[Si]](X ∩ [[Bi]]).

(v) if X ⊆ ∪n
i=1 [[Bi]] then

Mtot [[if ⊓⊔
n
i=1 Bi → Si fi]](X) = ∪n

i=1 Mtot [[Si]](X ∩ [[Bi]]).

(vi) M[[do ⊓⊔n
i=1 Bi → Si od]] = ∪∞

k=0 M[[(do ⊓⊔n
i=1 Bi → Si od)k]].

Proof. See Exercise 10.1. ⊓⊔

Lemma 10.4. (Change and Access)

(i) For all proper states σ and τ , τ ∈ N [[S]](σ) implies

τ [V ar − change(S)] = σ[V ar − change(S)].

(ii) For all proper states σ and τ , σ[var(S)] = τ [var(S)] implies

N [[S]](σ) = N [[S]](τ) mod Var − var(S).

Proof. See Exercise 10.2. ⊓⊔

10.3 Why Are Nondeterministic Programs Useful?

Let us discuss the main arguments in favor of Dijkstra’s language for nonde-
terministic programs.
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Symmetry

Dijkstra’s “guarded commands” allow us to present Boolean tests in a sym-
metric manner. This often enhances the clarity of programs.

As an example consider the while program that describes the well-known
algorithm for finding the greatest common divisor (gcd) of two natural num-
bers, initially stored in the variables x and y:

while x 6= y do
if x > y then x := x − y else y := y − x fi

od.

Using the repetitive command the same algorithm can be written in a more
readable and symmetric way:

GCD ≡ do x > y → x := x − y ¤ x < y → y := y − x od.

Note that both programs terminate with the gcd stored in the variables x
and y.

Nondeterminism

Nondeterministic programs allow us to express nondeterminism through the
use of nonexclusive guards. Surprisingly often, it is both clumsy and unneces-
sary to specify a sequential algorithm in a deterministic way —the remaining
choices can be resolved in an arbitrary way and need not concern the program-
mer. As a simple example, consider the problem of computing the maximum
of two numbers. Using the conditional statement this can be written as

if x ≥ y then max := x else max := y fi

So we broke the tie x = y in ‘favour’ of the variable x. Using the alternative
command the the maximum can be computed in a more natural, symmetric,
way that involves nondeterminism:

if x ≥ y → max := x ¤ y ≥ x → max := yfi.

Next, the following nondeterministic program computes the largest powers
of 2 and 3 that divide a given integer x:

twop := 0; threep := 0;
do 2 divides x → x := x div 2; twop := twop + 1
¤ 3 divides x → x := x div 3; threep := threep + 1
od.

If 6 divides x, both guards can be chosen. In fact, it does not matter which
one will be chosen —the final values of the variables twop and threep will
always be the same.
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These examples are perhaps somewhat contrived. A more interesting non-
deterministic program is presented in Section 10.5.

Failures

Recall that an alternative command fails rather than terminates if none of
the guards evaluates to true. We presented already in Section 3.7 a number of
natural examples concerning the failure statement that showed the usefulness
of failures.

Modeling Concurrency

Nondeterminism arises naturally in the context of parallel programs. For
example, upon termination of the program

S ≡ [x := 0‖x := 1‖x := 2]

the variable x may have one of the values 1, 2 or 3. Which one depends on
the order in which the three assignments are executed.

We can use nondeterministic programs to model this behavior. For exam-
ple, S can be modeled by the following program:

T ≡ turn1 := true; turn2 := true; turn3 := true;
do turn1 → x := 0; turn1 := false
¤ turn2 → x := 1; turn2 := false
¤ turn3 → x := 2; turn3 := false
od.

The variables turn1, turn2 und turn3 are used to model the control flow of
the parallel program S. Of course, the input/output behavior of S could have
been modeled by a much simpler program without such extra variables, for
example, by

if true → x := 0 ¤ true → x := 1 ¤ true → x := 2 fi.

The point is that the transition from S to T can be easily generalized to
a transformation of arbitrary parallel programs into nondeterministic ones.
(see Section 10.6).
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10.4 Verification

We now study partial and total correctness of nondeterministic programs.

Partial Correctness

We first present a proof system PN for partial correctness of nondeterministic
programs. PN includes axioms 1 and 2 and rules 3 and 6 introduced for PW,
the system for partial correctness of while programs. But rules 4 and 5 of
PW are now replaced by:

RULE 30: ALTERNATIVE COMMAND

{p ∧ Bi} Si {q}, i ∈ {1, . . . , n}

{p} if ⊓⊔n
i=1 Bi → Si fi {q}

RULE 31: REPETITIVE COMMAND

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n}

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n

i=1 ¬Bi}

Additionally, as explained in Section 3.8, PN includes the group of axioms
and rules A2–A6. Summarizing, we use the following proof system.

PROOF SYSTEM PN :
This system consists of the group of axioms
and rules 1, 2, 3, 6, 30, 31 and A2–A6.

Total Correctness

To lift PN to a system for total correctness, we have to show absence of
failures and absence of divergence. Since failures arise only if none of the
guards in an alternative command evaluates to true, their absence is proved
by adding a new premise in the rule for alternative commands. Thus we
consider
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RULE 32: ALTERNATIVE COMMAND II

p →
∨n

i=1 Bi,
{p ∧ Bi} Si {q}, i ∈ {1, . . . , n}

{p} if ⊓⊔n
i=1 Bi → Si fi {q}

As for while loops, absence of divergence is proved by adding to the repet-
itive command rule 31 premises dealing with the bound function. Thus we
consider

RULE 33: REPETITIVE COMMAND II

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
{p ∧ Bi ∧ t = z} Si {t < z}, i ∈ {1, . . . , n},
p → t ≥ 0

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n

i=1 ¬Bi}

where t is an integer expression and z is an integer variable not occurring in
p, t, Bi or Si for i ∈ {1, . . . , n}.

Summarizing, we consider the following proof system TN for total correct-
ness of nondeterministic programs.

PROOF SYSTEM TN :
This system consists of the group of axioms and rules
1, 2, 3, 6, 32, 33 and A3–A6.

Again we present correctness proofs in the form of proof outlines. The
definition of proof outlines for nondeterministic programs is analogous to
that for while programs. Thus, in the definition of a proof outline for total
correctness, the formation rules about alternative and repetitive commands
are as follows.

Let S∗ and S∗∗ stand for the program S annotated with assertions and
integer expressions. Then

(xiii)
p →

∨n
i=1 Bi,

{p ∧ Bi} S∗
i {q}, i ∈ {1, . . . , n}

{p} if ¤n
i=1 Bi →{p ∧ Bi} S∗

i {q} fi {q}
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(xiv)

{p ∧ Bi} S∗
i {p}, i ∈ {1, . . . , n},

{p ∧ Bi ∧ t = z} S∗∗
i {t < z}, i ∈ {1, . . . , n},

p → t ≥ 0

{inv : p}{bd : t} do ¤n
i=1 Bi →{p ∧ Bi} S∗

i {p} od {p ∧
∧n

i=1 ¬Bi}

where t is an integer expression and z is an integer variable not occurring in
p, t, Bi or Si for i ∈ {1, . . . , n}.

In proof outlines for partial correctness we drop in (xiii) the first premise
and in (xiv) the premises mentioning the bound function t and {bd : t} in
the conclusion.

Example 10.1. The following is a proof outline for total correctness of the
program GCD mentioned in the beginning of Section 10.3:

{x = x0 ∧ y = y0 ∧ x0 > 0 ∧ y0 > 0}
{inv : p}{bd : t}
do x > y → {p ∧ x > y}

x := x − y
¤ x < y → {p ∧ x < y}

x := y − x
od
{p ∧ ¬(x > y) ∧ ¬(x < y)}
{x = y ∧ y = gcd(x0, y0)}.

The binary function symbol gcd is to be interpreted as the “greatest common
divisor of.” The fresh variables x0 and y0 used in the pre- and postconditions
represent the initial values of x and y. As an invariant we use here

p ≡ gcd(x, y) = gcd(x0, y0) ∧ x > 0 ∧ y > 0

and as a bound function t ≡ x + y. ⊓⊔

Soundness

Let us investigate now the soundness of the proof systems PN and TN for
nondeterministic programs. With the definitions as in Chapter 3 we have:

Theorem 10.1. (Soundness of PN and TN)

(i) The proof system PN is sound for partial correctness of nondeterministic
programs.
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(ii) The proof system TN is sound for total correctness of nondeterministic
programs.

Proof. It is enough to show that all proof rules are sound under the cor-
responding notions of correctness. We leave the details to the reader as all
cases are similar to those considered in the proof of the Soundness of PW
and TW Theorem 3.1 (see Exercise 10.6). ⊓⊔

As before, proof outlines {p} S∗ {q} for partial correctness enjoy the fol-
lowing property: whenever the control of S in a given computation started
in a state satisfying p reaches a point annotated by an assertion, this asser-
tion is true. This intuitive property can be expressed as a Strong Soundness
Theorem about PN analogous to the Strong Soundness Theorem 3.3, but we
refrain here from repeating the details.

10.5 Case Study: The Welfare Crook Problem

In this section we generalize the approach of Section 3.10 to the systematic
program development to the case of nondeterministic programs. Suppose we
want to find a nondeterministic program R of the form

R ≡ T ; do ⊓⊔n
i=1 Bi → Si od

that satisfies, for a given precondition r and postcondition q, the correctness
formula

{r} R {q}. (10.1)

As before, we postulate that for some variables in r and q, say x1, . . ., xn,

x1, . . ., xn 6∈ change(R).

To prove (10.1), it suffices to find a loop invariant p and a bound function t
satisfying the following five conditions:

1. p is initially established; that is, {r} T {p} holds;
2. p is a loop invariant; that is, {p ∧ Bi} Si {p} for i ∈ {1, . . . , n} holds;
3. upon loop termination q is true; that is, p ∧

∧n

i=1 ¬Bi → q;
4. p implies t ≥ 0; that is, p → t ≥ 0;
5. t is decreased with each iteration; that is, {p ∧ Bi ∧ t = z} Si {t < z}

for i ∈ {1, . . . , n} holds, where z is a fresh variable.

As before, we represent the conditions 1–5 as a proof outline for total cor-
rectness:
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{r}
T ;
{inv : p}{bd : t}
do ¤n

i=1 Bi →{p ∧ Bi} S∗
i od

{p ∧
∧n

i=1 ¬Bi}
{q}.

The next step consists of finding an invariant by generalizing the postcondi-
tion.

We illustrate the development of a nondeterministic program that follows
these steps by solving the following problem due to W. Feijen. We follow
here the exposition of Gries [1981]. Given are three magnetic tapes, each
containing a list of different names in alphabetical order. The first contains
the names of people working at IBM Yorktown Heights, the second the names
of students at Columbia University and the third the names of people on
welfare in New York City. Practically speaking, all three lists are endless,
so no upper bounds are given. It is known that at least one person is on
all three lists. The problem is to develop a program CROOK to locate the
alphabetically first such person.

Slightly more abstractly, we consider three ordered arrays a, b, c of type
integer → integer, that is, such that i < j implies a[i] < a[j], and similarly
for b and c. We suppose that there exist values iv ≥ 0, jv ≥ 0 and kv ≥ 0
such that

a[iv] = b[jv] = c[kv]

holds, and moreover we suppose that the triple (iv, jv, kv) is the smallest
one in the lexicographic ordering among those satisfying this condition. The
values iv, jv and kv can be used in the assertions but not in the program.
We are supposed to develop a program that computes them.

Thus our precondition r is a list of the assumed facts —that a, b, c are
ordered together with the formal definition of iv, jv and kv. We omit the
formal definition. The postcondition is

q ≡ i = iv ∧ j = jv ∧ k = kv,

where i, j, k are integer variables of the still to be constructed program
CROOK. Additionally we require a, b, c, iv, jv, kv 6∈ change(CROOK).

Assuming that the search starts from the beginning of the lists, we are
brought to the following invariant by placing appropriate bounds on i, j and
k:

p ≡ 0 ≤ i ≤ iv ∧ 0 ≤ j ≤ jv ∧ 0 ≤ k ≤ kv ∧ r.

A natural choice for the bound function is

t ≡ (iv − i) + (jv − j) + (kv − k).



362 10 Nondeterministic Programs

The invariant is easily established by

i := 0; j := 0; k := 0.

The simplest ways to decrease the bound functions are the assignments i :=
i + 1, j := j + 1 and k := k + 1. In general, it is necessary to increment all
three variables, so we arrive at the following incomplete proof outline:

{r}
i := 0; j := 0; k := 0;
{inv : p}{bd : t}
do B1 →{p ∧ B1} i := i + 1
¤ B2 →{p ∧ B2} j := j + 1
¤ B3 →{p ∧ B3} k := k + 1
od
{p ∧ ¬B1 ∧ ¬B2 ∧ ¬B3}
{q},

where B1, B2 and B3 are still to be found. Of course the simplest choice
for B1, B2 and B3 are, respectively, i 6= iv, j 6= jv and k 6= kv but the
values iv, jv and kv cannot be used in the program. On the other hand,
p ∧ i 6= iv is equivalent to p ∧ i < iv which means by the definition of iv, jv
and kv that a[i] is not the crook. Now, assuming p, the last statement is
guaranteed if a[i] < b[j]. Indeed, a, b and c are ordered, so p ∧ a[i] < b[j]
implies a[i] < b[jv] = a[iv] which implies i < iv.

We can thus choose a[i] < b[j] for the guard B1. In a similar fashion we
can choose the other two guards which yield the following proof outline:

{r}
i := 0; j := 0; k = 0;
{inv : p}{bd : t}
do a[i] < b[j] → {p ∧ a[i] < b[j]}

{p ∧ i < iv}
i := i + 1

¤ b[j] < c[k] → {p ∧ b[j] < c[k]}
{p ∧ j < jv}
j := j + 1

¤ c[k] < a[i] → {p ∧ c[k] < a[i]}
{p ∧ k < kv}
k := k + 1

od
{p ∧ ¬(a[i] < b[j]) ∧ ¬(b[j] < c[k]) ∧ ¬(c[k] < a[i])}
{q}.
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Summarizing, we developed the following desired program:

CROOK ≡ i := 0; j := 0; k = 0;
do a[i] < b[j] → i := i + 1
¤ b[j] < c[k] → j := j + 1
¤ c[k] < a[i] → k := k + 1
od.

In developing this program the crucial step consisted of the choice of the
guards B1, B2 and B3. Accidentally, the choice made turned out to be suffi-
cient to ensure that upon loop termination the postcondition q holds.

10.6 Transformation of Parallel Programs

Let us return now to the issue of modeling parallel programs by means of
nondeterministic programs, originally mentioned in Section 10.3.

Reasoning about parallel programs with shared variables is considerably
more complicated than reasoning about sequential programs:

• the input/output behavior is not compositional, that is, cannot be solely
determined by the input/output behavior of their components,

• correctness proofs require a complicated test of interference freedom.

The question arises whether we cannot avoid these difficulties by decomposing
the task of verifying parallel programs into two steps:

(1) transformation of the considered parallel programs in nondeterministic
sequential ones,

(2) verification of the resulting nondeterministic programs using the proof
systems of this chapter.

For disjoint parallelism this can be done very easily. Recall from the Sequen-
tialization Lemma 7.7 that every disjoint parallel program S ≡ [S1‖. . .‖Sn]
is equivalent to the while program T ≡ S1; . . .; Sn.

For parallel programs with shared variables things are more difficult. First,
since these programs exhibit nondeterminism, such a transformation yields
nondeterministic programs. Second, to simulate all the possible interleavings
of the atomic actions, this transformation requires additional variables acting
as program counters. More precisely, the transformation of a parallel program

S ≡ [S1‖. . .‖Sn]

in the syntax of Chapter 9 into a nondeterministic program T (S) introduces
a fresh integer variable pci for each component Si. This variable models a pro-
gram counter for Si which during its execution always points to that atomic
action of Si which is to be executed next. To define the values of the program
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counters, the component programs S1, . . . , Sn are labeled in a preparatory
step.

In general, a component program R is transformed into a labeled program
R̂ by inserting in R pairwise distinct natural numbers k as labels of the
form “k :” at the following positions outside of any atomic region and any
await statement:

• in front of each skip statement,
• in front of each assignment u := t,
• in front of each if symbol,
• in front of each while symbol,
• in front of each atomic region 〈S0〉,
• in front of each await symbol.

For a labeled program R̂ let first(R̂) denote the first label in R̂ and
last(R̂) the last label in R̂. For each labeled component program Ŝi of S we
require that the labels are chosen as consecutive natural numbers starting at
0. Thus the labels in Ŝi are

first(Ŝi) = 0, 1, 2, 3, . . . , last(Ŝi).

For checking termination we define

termi = last(Ŝi) + 1.

Now we transform S into T (S) by referring to the labeled component pro-
grams Ŝ1, . . . , Ŝn:

T (S) ≡ pc1 := 0; . . . pcn := 0;

do T1(Ŝ1)(term1)

¤ T2(Ŝ2)(term2)
. . . . . . . . . . . . . . . . . .

¤ Tn(Ŝn)(termn)
od;
if TERM → skip fi.

Here pc1, . . . , pcn are integer variables that do not occur in S and that model
the program counters of the components Si. The Boolean expression

TERM ≡
∧n

i=1 pci = termi

represents the termination condition for the labeled components Ŝ1, . . . , Ŝn.
Each component transformation Ti(Ŝi)(termi) translates into one or more

guarded commands, separated by the ¤ symbol. We define these component
transformations

Ti(R̂)(c)
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by induction on the structure of the labeled component program R̂, taking
an additional label c ∈ N as a parameter modeling the continuation value
that the program counter pci assumes upon termination of R̂:

• Ti(k : skip)(c) ≡ pci = k → pci := c,

• Ti(k : u := t)(c) ≡ pci = k → u := t; pci := c,

• Ti(R̂1; R̂2)(c) ≡

Ti(R̂1)(first(R̂2))

¤ Ti(R̂2)(c),

• Ti(k : if B then R̂1 else R̂2 fi)(c) ≡

pci = k ∧ B → pci := first(R̂1)

¤ pci = k ∧ ¬B → pci := first(R̂2)

¤ Ti(R̂1)(c)

¤ Ti(R̂2)(c),

• Ti(k : while B do R̂ od)(c) ≡

pci = k ∧ B → pci := first(R̂)
¤ pci = k ∧ ¬B → pci := c

¤ Ti(R̂)(k),

• Ti(k : 〈S0〉)(c) ≡ pci = k → S0; pci := c,

• Ti(k : await B then S0 end)(c) ≡ pci = k ∧ B → S0; pci := c.

To see this transformation in action let us look at an example.

Example 10.2. Consider the parallel composition S ≡ [S1‖S2] in the pro-
gram FINDPOS of Case Study 8.6. The corresponding labeled components
are

Ŝ1 ≡ 0: while i < min(oddtop, eventop) do
1: if a[i] > 0 then 2: oddtop := i else 3: i := i + 2 fi

od

and

Ŝ2 ≡ 0: while j < min(oddtop, eventop) do
1: if a[j] > 0 then 2: eventop := j else 3: j := j + 2 fi

od.

Since each component program uses the labels 1, 2, 3, the termination values
are term1 = term2 = 4. Therefore S is transformed into

T (S) ≡ pc1 := 0; pc2 := 0;

do T1(Ŝ1)(4)

¤ T2(Ŝ2)(4)
od;
if pc1 = 4 ∧ pc2 = 4 → skip fi,
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where for the first component we calculate

T1(Ŝ1)(4) ≡ pc1 = 0 ∧ i < min(oddtop, eventop) → pc1 := 1
¤ pc1 = 0 ∧ ¬(i < min(oddtop, eventop)) → pc1 := 4
¤ T1(1 : if . . .fi)(0),

T1(1 : if . . .fi)(0) ≡ pc1 = 1 ∧ a[i] > 0 → pc1 := 2
¤ pc1 = 1 ∧ ¬(a[i] > 0) → pc1 := 3
¤ T1(2 : oddtop := i)(0)
¤ T1(3 : i := i + 2)(0),

T1(2 : oddtop := i)(0) ≡ pc1 = 2 → oddtop := i; pc1 := 0,

T1(3 : i := i + 2)(0) ≡ pc1 = 3 → i := i + 2; pc1 := 0.

Altogether we obtain the following nondeterministic program:

T (S) ≡ pc1 := 0; pc2 := 0;
do pc1 = 0 ∧ i < min(oddtop, eventop) → pc1 := 1
¤ pc1 = 0 ∧ ¬(i < min(oddtop, eventop)) → pc1 := 4
¤ pc1 = 1 ∧ a[i] > 0 → pc1 := 2
¤ pc1 = 1 ∧ ¬(a[i] > 0) → pc1 := 3
¤ pc1 = 2 → oddtop := i; pc1 := 0
¤ pc1 = 3 → i := i + 2; pc1 := 0
¤ pc2 = 0 ∧ j < min(oddtop, eventop) → pc2 := 1
¤ pc2 = 0 ∧ ¬(j < min(oddtop, eventop)) → pc2 := 4
¤ pc2 = 1 ∧ a[j] > 0 → pc2 := 2
¤ pc2 = 1 ∧ ¬(a[j] > 0) → pc2 := 3
¤ pc2 = 2 → eventop := j; pc2 := 0
¤ pc2 = 3 → j := j + 2; pc2 := 0
od;
if pc1 = 4 ∧ pc2 = 4 → skip fi

Note that upon termination of the do loop the assertion pc1 = 4 ∧ pc2 = 4
holds, so the final if statement has no effect here. ⊓⊔

For parallel programs S with shared variables, one can prove that S and
T (S) are equivalent modulo the program counter variables. In other words,
using the mod notation of Section 2.3, we have for every proper state σ:

Mtot [[S]](σ) = Mtot [[T (S)]](σ) mod {pc1, . . ., pcn}.

For parallel programs with synchronization the relationship between S and
T (S) is more complex because deadlocks of S are transformed into failures
of T (S) (see Exercise 10.9). As an illustration let us look at the following
artificial parallel program with an atomic region and an await statement.

Example 10.3. Consider the parallel program S ≡ [S1‖S2‖S3] with the fol-
lowing labeled components:
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Ŝ1 ≡ 0 : if x = 0 then 1 : x := x + 1; 2 : x := x + 2 else 3 : x := x − 1 fi,

Ŝ2 ≡ 0 : while y < 10 do 1 : 〈y := y + 1; z := z − 1〉 od,

Ŝ3 ≡ 0 : await z 6= y then done := true end.

Note that term1 = 4, term2 = 2, and term3 = 1. Thus S is transformed into
the following nondeterministic program:

T (S) ≡ pc1 := 0; pc2 := 0; pc3 := 0;

do T1(Ŝ1)(4)

¤ T2(Ŝ2)(2)

¤ T3(Ŝ3)(1)
od;
if pc1 = 4 ∧ pc2 = 2 ∧ pc3 = 1 → skip fi

where we calculate for the component transformations:

T1(Ŝ1)(4) ≡ pc1 = 0 ∧ x = 0 → pc1 := 1
¤ pc1 = 0 ∧ ¬(x = 0) → pc1 := 3
¤ pc1 = 1 → x := x + 1; pc1 := 2
¤ pc1 = 2 → x := x + 2; pc1 := 4
¤ pc1 = 3 → x := x − 1; pc1 := 4,

T2(Ŝ2)(2) ≡ pc2 = 0 ∧ y < 10 → pc2 := 1
¤ pc2 = 0 ∧ ¬(y < 10) → pc2 := 2
¤ pc2 = 1 → y := y + 1; z := z − 1; pc1 := 0,

T3(Ŝ3)(1) ≡ pc3 = 0 ∧ z 6= y → done := true; pc3 := 1.

Altogether we obtain

T (S) ≡ pc1 := 0; pc2 := 0; pc3 := 0;
do pc1 = 0 ∧ x = 0 → pc1 := 1
¤ pc1 = 0 ∧ ¬(x = 0) → pc1 := 3
¤ pc1 = 1 → x := x + 1; pc1 := 2
¤ pc1 = 2 → x := x + 2; pc1 := 4
¤ pc1 = 3 → x := x − 1; pc1 := 4
¤ pc2 = 0 ∧ y < 10 → pc2 := 1
¤ pc2 = 0 ∧ ¬(y < 10) → pc2 := 2
¤ pc2 = 1 → y := y + 1; z := z − 1; pc1 := 0
¤ pc3 = 0 ∧ z 6= y → done := true; pc3 := 1
od;
if pc1 = 4 ∧ pc2 = 2 ∧ pc3 = 1 → skip fi.

Consider now a state σ satisfying z = y = 10. Then S can deadlock
from σ. So ∆ ∈ Mtot [[S]](σ). By contrast, the do loop in T (S) terminates
in a state satisfying pc1 = 4 ∧ pc2 = 2 ∧ pv3 = 0. However, the final
if statement in T (S) converts this “premature” termination into a failure.
So fail ∈ Mtot [[T (S)]](σ). ⊓⊔
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These examples reveal one severe drawback of the transformation: the
structure of the original parallel program gets lost. Instead, we are faced with
a nondeterministic program on the level of an assembly language where each
atomic action is explicitly listed. Therefore we do not pursue this approach
any further.

In the next chapter we are going to see, however, that for distributed pro-
grams a corresponding transformation into nondeterministic programs does
preserve the program structure without introducing auxiliary variables and
is thus very well suited as a basis for verification.

10.7 Exercises

10.1. Prove the Input/Output Lemma 10.3.

10.2. Prove the Change and Access Lemma 10.4.

10.3. Let π be a permutation of the indices {1, . . . , n}. Prove that for N = M
and N = Mtot :

(i) N [[if ⊓⊔n
i=1 Bi → Si fi]]=N [[if ¤n

i=1 Bπ(i) → Sπ(i) fi]],
(ii) N [[do ⊓⊔n

i=1 Bi → Si od]]=N [[do ¤n
i=1 Bπ(i) → Sπ(i) od]].

10.4. Prove that for N = M and N = Mtot :

(i)

N [[do ⊓⊔n
i=1 Bi → Si od]]

= N [[ if ¤n
i=1 Bi → Si; do ⊓⊔n

i=1 Bi → Si od

¤
∧n

i=1 ¬Bi → skip
fi]],

(ii)

N [[do ⊓⊔n
i=1 Bi → Si od]]

= N [[do
∨n

i=1 Bi → if ⊓⊔n
i=1 Bi → Si fi od]].

10.5. Which of the following correctness formulas are true in the sense of
total correctness?

(i) {true} if x > 0 → x := 0¤x < 0 → x := 0 fi {x = 0},
(ii) {true} if x > 0 → x := 1¤x < 0 → x := 1 fi {x = 1},
(iii)

{true}
if x > 0 → x := 0
¤ x = 0 → skip
¤ x < 0 → x := 0
fi
{x = 0},
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(iv)

{true}
if x > 0 → x := 1
¤ x = 0 → skip
¤ x < 0 → x := 1
fi
{x = 1},

(v) {true} if x > 0 then x := 0 else x := 0 fi {x = 0},
(vi) {true} if x > 0 then x := 1 else x := 1 fi {x = 1}.

Give both an informal argument and a formal proof in the systems TN or
TW .

10.6. Prove the Soundness of PN and TN Theorem 10.1.
Hint. Follow the pattern of the proof of the Soundness of PW and TW The-
orem 3.1 and use Lemma 10.3.

10.7. Develop systematically a program that checks if x appears in an array
section a[0 : n − 1].

10.8. Transform the parallel program MUTEX-S of Section 9.5, which en-
sures mutual exclusion with the help of semaphores, into a nondeterministic
program using the transformation of Section 10.6.

10.9. Prove that for every parallel program S ≡ [S1‖. . .‖Sn] with shared
variables there exists a nondeterministic program T (S) and a set of variables
{pc1, . . ., pcn} not appearing in S such that for all proper states σ

Mtot [[S]](σ) = Mtot [[T (S)]](σ) mod {pc1, . . ., pcn}.

Which semantic relationship can be established for the case of parallel pro-
grams with synchronization?
Hint. See the discussion at the end of Section 10.6.

10.10. Define the weakest liberal precondition and the weakest precondi-
tion of a nondeterministic program by analogy with while programs (see
Definition 3.10). Assume the analogue of the Definability Theorem 3.4 for
nondeterministic programs. Prove that

(i) wlp(S1; S2, q) ↔ wlp(S1, wlp(S2, q)),

(ii) wlp(if ⊓⊔n
i=1 Bi → Si fi, q) ↔

∧n

i=1(Bi → wlp(Si, q)),

(iii)

wlp(do ⊓⊔n
i=1 Bi → Si od, q) ∧ Bi

→ wlp(Si, wlp(do ⊓⊔n
i=1 Bi → Si od, q)) for i ∈ {1, . . . , n},

(iv) wlp(do ⊓⊔n
i=1 Bi → Si od, q) ∧

∧n
i=1 ¬Bi → q,
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(v) |= {p} S {q} iff p → wlp(S, q).

Prove that the above statements (i), (iii) and (iv) hold when wlp is replaced
by wp. Also prove that

(vi) |=tot {p} S {q} iff p → wp(S, q),

(vii) wp(if ⊓⊔n
i=1 Bi → Si fi, q) ↔ (

∨n

i=1 Bi) ∧
∧n

i=1(Bi → wp(Si, q)).

10.11.

(i) Prove that the proof system PN is complete for partial correctness of
nondeterministic programs.

(ii) Suppose that the set of all integer expressions is expressive in the sense
of Definition 3.13. Prove that the proof system TN is complete for total
correctness of nondeterministic programs.

Hint. Modify the proof of the Completeness Theorem 3.5 and use Exer-
cise 10.10.

10.8 Bibliographic Remarks

We have studied here a number of issues concerning a special type of non-
deterministic programs introduced in Dijkstra [1975]. Their correctness and
various semantics are discussed in de Bakker [1980] and Apt [1984].

Their systematic development was originated in Dijkstra [1976] and was
popularized and further explained in Gries [1981]. In the 1980s the journal
Science of Computer Programming carried a regular problem section on this
matter edited by M. Rem. The program for the welfare crook developed in
Section 10.5 is due to W. Feijen. The presentation chosen here is due to Gries
[1981].

The first treatment of nondeterminism in the framework of program ver-
ification is due to Lauer [1971], where a proof rule for the or construct (the
meaning of S1 or S2 is to execute either S1 or S2) is introduced. This ap-
proach to nondeterminism is extensively discussed in de Bakker [1980] where
further references can be found.

The idea of linking parallel programs to nondeterministic programs goes
back to the work of Ashcroft and Manna [1971] and Flon and Suzuki [1978,
1981]. This approach reappears in the book on UNITY by Chandy and
Misra [1988], and in the work on action systems by Back [1989] and Back
and von Wright [2008]. UNITY programs and action systems are particularly
simple nondeterministic programs consisting of an initialization part and a
single do loop containing only atomic actions. This is exactly the class of
nondeterministic programs into which we have transformed parallel programs
in Section 10.6.
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The main emphasis of the work of Chandy and Misra and of Back lies in the
systematic development of parallel programs on the basis of equivalent non-
deterministic ones. The systematic development of parallel implementations
starting from sequential programs of a particular simple form (i.e., nested
for loops) is pursued by Lengauer [1993].

Related to the approach of action systems are the system specification
method TLA (Temporal Logic of Actions) by Lamport [1994,2003] and the
abstract machines in the B-method by Abrial [1996]. The latter method has
recently been extended to Event-B (see, for example, Abrial and Hallerst-
ede [2007] and Abrial [2009]). Also here the basic form of the specifications
consists of an initialization part and a single do loop containing only atomic
actions.
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M ANY REAL SYSTEMS consist of a number of physically dis-

tributed components that work independently using their private

storage, but also communicate from time to time by explicit message passing.

Such systems are called distributed systems.

Distributed programs are abstract descriptions of distributed systems. A

distributed program consists of a collection of processes that work concur-

rently and communicate by explicit message passing. Each process can access

a set of variables which are disjoint from the variables that can be changed

by any other process.

There are two ways of organizing message passing. We consider here syn-

chronous communication where the sender of a message can deliver it only

when the receiver is ready to accept it at the same moment. An example

is communication by telephone. Synchronous communication is also called

handshake communication or rendezvous. Another possibility is asynchronous

373
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communication where the sender can always deliver its message. This stip-

ulates an implicit buffer where messages are kept until the receiver collects

them. Communication by mail is an example. Asynchronous communication

can be modeled by synchronous communication if the buffer is introduced as

an explicit component of the distributed system.

As a syntax for distributed programs we introduce in Section 11.1 a sub-

set of the language CSP (Communicating Sequential Processes) due to Hoare

[1978,1985]. This variant of CSP extends Dijkstra’s guarded command lan-

guage (studied in Chapter 10) and disjoint parallel composition (studied in

Chapter 7) by adding input/output commands for synchronous communica-

tion. From the more recent version of CSP from Hoare [1985] we use two

concepts here: communication channels instead of process names and output

guards in the alternatives of repetitive commands. Hoare’s CSP is also the

kernel of the programming language OCCAM (see INMOS [1984]) used for

distributed transputer systems.

In Section 11.2 we define the semantics of distributed programs by formal-

izing the effect of a synchronous communication. In particular, synchronous

communication may lead to deadlock, a situation where some processes of a

distributed program wait indefinitely for further communication with other

processes.

Distributed programs can be transformed in a direct way into nondeter-

ministic programs, without the use of control variables. This transformation

is studied in detail in Section 11.3. It is the key for a simple proof theory

for distributed programs which is presented in Section 11.4. As in Chapter 9,

we proceed in three steps and consider first partial correctness, then weak

total correctness which ignores deadlocks, and finally total correctness. As a

case study we prove in Section 11.5 the correctness of a data transmission

problem.
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11.1 Syntax

Distributed programs consist of a parallel composition of sequential processes.
So we introduce first the notion of a process.

Sequential Processes

A (sequential) process is a statement of the form

S ≡ S0; do ⊓⊔m
j=1 gj → Sj od,

where m ≥ 0 and S0, . . ., Sm are nondeterministic programs as defined in
Chapter 10. S0 is the initialization part of S and

do ⊓⊔m
j=1 gj → Sj od

is the main loop of S. Note that there may be further do loops inside S. By
convention, when m = 0 we identify the main loop with the statement skip.
Then S consists only of the nondeterministic program S0. Thus any nonde-
terministic program is a process. Also, when the initialization part equals
skip, we drop the subprogram S0 from a process.

The g1, . . ., gm are generalized guards of the form

g ≡ B;α

where B is a Boolean expression and α an input/output command or i/o
command for short, to be explained in a moment. If B ≡ true, we abbreviate

true;α ≡ α.

The main loop terminates when all Boolean expressions within its generalized
guards evaluate to false.

Input/output commands refer to communication channels or channels for
short. Intuitively, such channels represent connections between the processes
along which values can be transmitted. For simplicity we assume the follow-
ing:

• channels are undirected; that is, they can be used to transmit values in
both directions;

• channels are untyped; that is, they can be used to transmit values of dif-
ferent types.

An input command is of the form c?u and an output command is of the
form c!t where c is a communication channel, u is a simple or subscripted
variable and t is an expression.
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An input command c?u expresses the request to receive a value along the
channel c. Upon reception this value is assigned to the variable u. An output
command c!t expresses the request to send the value of the expression t along
channel c. Each of these requests is delayed until the other request is present.
Then both requests are performed together or synchronously. In particular,
an output command cannot be executed independently. The joint execution
of two i/o commands c?u and c!t is called a communication of the value of t
along channel c to the variable u.

While values of different types can be communicated along the same chan-
nel, each individual communication requires two i/o commands of a matching
type. This is made precise in the following definition.

Definition 11.1. We say that two i/o commands match when they refer to
the same channel, say c, one of them is an input command, say c?u, and the
other an output command, say c!t, such that the types of u and t agree. We
say that two generalized guards match if their i/o commands match. ⊓⊔

Two generalized guards contained in two different processes can be passed
jointly when they match and their Boolean parts evaluate to true. Then
the communication between the i/o commands takes place. The effect of a
communication between two matching i/o commands α1 ≡ c?u and α2 ≡ c!t
is the assignment u := t. Formally, for two such commands we define

Eff(α1, α2) ≡ Eff(α2, α1) ≡ u := t.

For a process S let change(S) denote the set of all simple or array variables
that appear in S on the left-hand side of an assignment or in an input com-
mand, let var(S) denote the set of all simple or array variables appearing in
S, and finally let channel(S) denote the set of channel names that appear in
S. Processes S1 and S2 are called disjoint if the following condition holds:

change(S1) ∩ var(S2) = var(S1) ∩ change(S2) = ∅.

We say that a channel c connects two processes Si and Sj if

c ∈ channel(Si) ∩ channel(Sj).

Distributed Programs

Now, distributed programs are generated by the following clause for parallel
composition:

S ::= [S1‖. . .‖Sn],

where for n ≥ 1 and sequential processes S1, . . ., Sn the following two condi-
tions are satisfied:
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(i) Disjointness: the processes S1, . . ., Sn are pairwise disjoint.
(ii) Point-to-Point Connection: for all i, j, k such that 1 ≤ i < j < k ≤ n

channel(Si) ∩ channel(Sj) ∩ channel(Sk) = ∅

holds.

Condition (ii) states that in a distributed program each communication chan-
nel connects at most two processes. Note that as in previous chapters we
disallow nested parallelism.

A distributed program [S1‖. . .‖Sn] terminates when all of its processes Si

terminate. This means that distributed programs may fail to terminate be-
cause of divergence of a process or an abortion arising in one of the processes.
However, they may also fail to terminate because of a deadlock. A deadlock
arises here when not all processes have terminated, none of them has ended
in a failure and yet none of them can proceed. This will happen when all
nonterminated processes are in front of their main loops but no pair of their
generalized guards matches.

We now illustrate the notions introduced in this section by two examples.
To this end, we assume a new basic type character which stands for sym-
bols from the ASCII character set. We consider sequences of such characters
represented as finite sections of arrays of type integer → character.

Example 11.1. We now wish to write a program

SR ≡ [SENDER‖RECEIVER],

where the process SENDER sends to the process RECEIVER a sequence of
M (M ≥ 1) characters along a channel link. We assume that initially this
sequence is stored in the section a[0 : M − 1] of an array a of type integer
→ character in the process SENDER. Upon termination of SR we want
this sequence to be stored in the section b[0 : M − 1] of an array b of type
integer → character in the process RECEIVER, see Figure 11.1.

The sequential processes of SR can be defined as follows:

SENDER ≡ i := 0; do i 6= M ; link!a[i] → i := i + 1 od,

RECEIVER ≡ j := 0; do j 6= M ; link?b[j] → j := j + 1 od.

The processes first execute independently of each other their initialization
parts i := 0 and j := 0. Then the first communication along the chan-
nel link occurs with the effect of b[0] := a[0]. Subsequently both processes
independently increment their local variables i and j. Then the next com-
munication along the channel link occurs with the effect of b[1] := a[1]. This
character-by-character transmission from a into b proceeds until the pro-
cesses SENDER and RECEIVER have both executed their main loops M
times. Then i = j = M holds and SR terminates with the result that the
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Fig. 11.1 Sending characters along a channel.

character sequence in a[0 : M − 1] has been completely transmitted into
b[0 : M − 1]. Note that in the program SR the sequence of communications
between SENDER and RECEIVER is uniquely determined. ⊓⊔

Example 11.2. We now wish to transmit and process a sequence of charac-
ters. To this end, we consider a distributed program

TRANS ≡ [SENDER‖FILTER‖RECEIVER].

The intention now is that the process FILTER pass all the characters from
SENDER to RECEIVER with the exception that it delete from the sequence
all blank characters, see Figure 11.2.

As before, the sequence of characters is initially stored in the section
a[0 : M − 1] of an array a of type integer → character in the process
SENDER. The process FILTER has an array b of the same type serving as
an intermediate store for processing the character sequence and the process
RECEIVER has an array c of the same type to store the result of the filtering
process. For coordinating its activities the process FILTER uses two integer
variables in and out pointing to elements in the array b.

The processes of TRANS are defined as follows:

SENDER ≡ i := 0; do i 6= M ; input!a[i] → i := i + 1 od,

FILTER ≡ in := 0; out := 0; x := ‘ ’;
do x 6= ‘∗’; input?x →

if x = ‘ ’ → skip
⊓⊔ x 6= ‘ ’ → b[in] := x;

in := in + 1
fi

⊓⊔ out 6= in; output!b[out] → out := out + 1
od,
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Fig. 11.2 A transmission problem.

RECEIVER ≡ j := 0; y := ‘ ’;
do y 6= ‘∗’; output?y → c[j] := y; j := j + 1 od.

The process FILTER can communicate with both other processes. Along
channel input it is ready to receive characters from process SENDER until ‘∗’
has been received. Along channel output it is ready to transmit all nonblank
characters to the process RECEIVER. If the Boolean parts x 6= ‘∗’ and out 6=
in of the generalized guards are both true, the choice whether to receive a
new character along channel input or to transmit a processed character along
channel output is nondeterministic. Thus the distributed program TRANS
can pursue computations with different communication sequences among its
processes.

What about termination? The process SENDER terminates once it has
sent all its M characters to the FILTER. The process FILTER terminates
when it has received the character ‘∗’ and it has transmitted to RECEIVER
all nonblank characters it has received. Finally, the process RECEIVER ter-
minates once it has received from FILTER the character ‘∗’. Thus TRANS
terminates if SENDER sends as the last of its M characters the ‘∗’.

If SENDER did not send any ‘∗’, a deadlock would arise when the processes
FILTER and RECEIVER waited in vain for some further input. A deadlock
would also arise if SENDER sent the ‘∗’ too early, that is, before M characters
have been sent, because then FILTER would not accept any further characters
from the SENDER. ⊓⊔
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11.2 Semantics

We now provide a precise operational semantics of distributed programs by
formalizing the above informal remarks. The following transition axiom for-
malizes the termination of a main loop within a process:

(xxiv) < do ⊓⊔m
j=1 gj → Sj od, σ > → < E, σ >

where for j ∈ {1, . . .,m} gj ≡ Bj ;αj and σ |=
∧m

j=1 ¬Bj .

Next, we consider the effect of a communication. We allow the following
transition axiom:

(xxv) < [S1‖. . .‖Sn], σ > → < [S′
1‖. . .‖S

′
n], τ >

where for some k, ℓ ∈ {1, . . ., n}, k 6= ℓ

Sk ≡ do ⊓⊔m1

j=1 gj → Rj od,

Sℓ ≡ do ⊓⊔m2

j=1 hj → Tj od,

for some j1 ∈ {1, . . .,m1} and j2 ∈ {1, . . .,m2} the generalized
guards gj1 ≡ B1;α1 and hj2 ≡ B2;α2 match, and

(1) σ |= B1 ∧ B2,

(2) M[[Eff(α1, α2)]](σ) = {τ},

(3) S′
i ≡ Si for i 6= k, ℓ,

(4) S′
k ≡ Rj1 ; Sk,

(5) S′
ℓ ≡ Tj2 ; Sℓ.

Let us clarify the meaning of this transition by discussing its conditions.
The form of the processes Sk and Sℓ indicates that each of them is about to
execute its main loop. The generalized guards gj1and hj2 match, so syntac-
tically a communication between Sk and Sℓ can take place.

Condition (1) states the semantic condition for this communication: the
Boolean parts of gj1 and hj2 hold in the initial state σ. This enables gj1 and
hj2 to pass jointly. The new state τ is obtained by executing the assignment
statement representing the effect of the communication —see (2). This com-
munication involves only processes Sk and Sℓ; hence (3). Finally, processes
Sk and Sℓ enter the respective branches of their main loops; hence (4) and
(5).

The above transition axiom explains how main loops are executed. It in-
volves exactly two processes but is represented as a transition of a parallel
composition of n processes. Other transitions of a parallel composition of pro-
cesses are generated as in Chapter 7, by adopting the interleaving rule (xvii)
from Section 7.2. The meaning of distributed programs is thus defined by
expanding the transition system for nondeterministic programs by transition
rule (xvii) and the above transition axioms (xxiv) and (xxv).
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For distributed programs S we distinguish three variants of input/output
semantics:

• partial correctness semantics:

M[[S]](σ) = {τ |< S, σ > →∗ < E, τ >},

• weak total correctness semantics:

Mwtot [[S]](σ) = M[[S]](σ) ∪ {⊥ | S can diverge from τ}

∪ {fail | S can fail from τ},

• total correctness semantics:

Mtot [[S]](σ) = Mwtot [[S]](σ) ∪ {∆ | S can deadlock from σ}.

Here we consider a proper state σ and three kinds of special states: ⊥ rep-
resenting divergence, fail representing failure and ∆ representing deadlock.
Divergence, failure and deadlock are defined as in Chapters 3, 10 and 9,
respectively. So, divergence arises when there is an infinite computation

< S, σ > → . . .

—it is possible due to the presence of the repetitive commands. Failure arises
when there exists a computation of the form

< S, σ > → . . . → < S1, fail >

—it is possible due to the presence of the alternative commands. A deadlock
takes place when there exists a computation of the form

< S, σ > → . . . → < R, τ >,

with R 6≡ E, such that the configuration of < R, τ > has no successor. This
is possible due to the presence of i/o commands.

Only the total correctness semantics takes all of these possibilities into
account. As in Chapter 9, weak total correctness results from total correctness
by ignoring deadlock. Note, however, that due to the presence of alternative
statements in the language of this chapter, weak total correctness now also
records failures. The semantics of weak total correctness is not interesting in
itself but helps us to modularize proofs of total correctness.

We conclude this section by proving the bounded nondeterminism of dis-
tributed programs.

Lemma 11.1. (Bounded Nondeterminism) Let S be a distributed pro-
gram and σ a proper state. Then Mtot [[S]](σ) is either finite or it contains
⊥.
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Proof. For distributed programs S every configuration < S, σ > has only
finitely many successors in the transition relation → , so the same argument
as in the proof of the Bounded Nondeterminism Lemma 8.2 based on the
König’s Lemma 8.4 is applicable. ⊓⊔

11.3 Transformation into Nondeterministic Programs

The meaning of distributed programs can be better understood through a
transformation into nondeterministic programs. In contrast to the transfor-
mation of parallel programs into nondeterministic programs described in Sec-
tion 10.6 we do not need here any additional control variables. This is due
to the simple form of the distributed programs considered here, where i/o
commands appear only in the main loop. In the next section we use this
transformation as a basis for the verification of distributed programs.

Throughout this section we consider a distributed program

S ≡ [S1‖. . .‖Sn],

where each process Si for i ∈ {1, . . . , n} is of the form

Si ≡ Si,0; do ⊓⊔mi

j=1 Bi,j ;αi,j → Si,j od.

As abbreviation we introduce

Γ = {(i, j, k, ℓ) | αi,j and αk,ℓ match and i < k}.

We transform S into the following nondeterministic program T (S):

T (S) ≡ S1,0; . . .; Sn,0;
do ⊓⊔(i,j,k,ℓ)∈Γ Bi,j ∧ Bk,ℓ → Eff(αi,j , αk,ℓ);

Si,j ; Sk,ℓ

od,

where the use of elements of Γ to “sum” all guards in the loop should be
clear. In particular, when Γ = ∅ we drop this loop from T (S).

Semantic Relationship Between S and T (S)

The semantics of S and T (S) are not identical because the termination be-
havior is different. Indeed, upon termination of S the assertion
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TERM ≡
n∧

i=1

mi∧

j=1

¬Bi,j

holds. On the other hand, upon termination of T (S) the assertion

BLOCK ≡
∧

(i,j,k,ℓ)∈Γ

¬(Bi,j ∧ Bk,ℓ)

holds. Clearly
TERM → BLOCK

but not the other way round. States that satisfy BLOCK ∧ ¬TERM are dead-
lock states of S.

The semantics of the programs S and T (S) are related in a simple way by
means of the following theorem that is crucial for our considerations.

Theorem 11.1. (Sequentialization) For all proper states σ

(i) M[[S]](σ) = M[[T (S)]](σ) ∩ [[TERM ]],

(ii) {⊥, fail} ∩Mwtot [[S]](σ) = ∅ iff {⊥, fail} ∩Mtot [[T (S)]](σ) = ∅,

(iii) ∆ 6∈ Mtot [[S]](σ) iff M[[T (S)]](σ) ⊆ [[TERM ]].

The Sequentialization Theorem relates a distributed program to a nonde-
terministic program. In contrast to previous theorems concerning correctness
of program transformations (Sequentialization Lemma 7.7, Atomicity The-
orem 8.1 and Initialization Theorem 8.2) we do not obtain here a precise
match between the semantics of S and the transformed program T (S).

One of the reasons is that the termination conditions for S and T (S) are
different. As noted above, upon termination of S, the condition TERM holds,
whereas upon termination of T (S) only a weaker condition BLOCK holds.
This explains why the condition TERM appears in (i).

Next, the sequentialization of the executions of the subprograms Si,j can
“trade” a failure for divergence, or vice versa. A trivial example for this is a
program S of the form

S ≡ [S1,0; skip || S2,0; skip].

Then T (S) is of the form

T (S) ≡ S1,0;S2,0; skip.

Suppose now that S1,0 yields ⊥ and S2,0 yields fail. Then S can fail whereas
T (S) diverges. If on the other hand S1,0 yields fail and S2,0 yields ⊥, then
S can diverge, whereas T (S) fails. This explains why in (ii) we have to deal
with fail and ⊥ together.

Finally, deadlocks do not arise when executing nondeterministic programs.
Deadlocks of S are transformed into terminal configurations of T (S) in whose
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state the condition TERM does not hold. A simple example for this is the
program

S ≡ [do c!1 → skip od || skip].

Then T (S) ≡ skip because the set Γ of matching guards is empty. Thus S
ends in a deadlock whereas T (S) terminates in a state satisfying ¬TERM .
The contraposition of this observation is stated in (iii).

To prove the above theorem we introduce some auxiliary notions and prove
some of their properties.

In a transition of a computation of S either one or two processes are
activated, depending on whether transition rule (xvii) or axiom (xxiv) is
used, or transition axiom (xxv) applies. When one process is activated in
a transition, then we attach to → its index and when two processes are
activated, say Si and Sj with i < j, then we attach to → the pair (i, j).

If a transition C
i
→ D is obtained by applying transition rule (xvii), then

we say that the process Si executes a private action in C
i
→ D, and if it is

obtained by applying transition axiom (xxiv), then we say that the process

Si exits its main loop in C
i
→ D. Alternatively, we can say that the transition

C
i
→ D consists of a private action of Si or of the main loop exit of Si. Finally,

if C
(i,j)
−→ D, then we say that each of the processes Si and Sj takes part in a

communication in C
(i,j)
−→ D.

Fix now some A,B ∈ {1, . . . , n} ∪ {(i, j) | i, j ∈ {1, . . . , n} and i < j}. We

say that the relations
A
→ and

B
→ commute, if for all configurations C,D

where D is not a failure,

C
A
→ ◦

B
→ D iff C

B
→ ◦

A
→ D,

where ◦ denotes relational composition as defined in Section 2.1.
The following two simple lemmata are of importance to us.

Lemma 11.2. (Commutativity)

(i) For i, j ∈ {1, . . . , n} the relations
i
→ and

j
→ commute.

(ii) For distinct i, j, k ∈ {1, . . . , n} with i < j, the relations
(i,j)
−→ and

k
→

commute.

Proof. See Exercise 11.2. ⊓⊔

Lemma 11.3. (Failure) Consider configurations C,F where F is a failure
and distinct i, j, B ∈ {1, . . . , n}. Suppose that A = i or A = (i, j) with i < j.
Then

C
A
→ ◦

B
→ F implies C

B
→ F ′

for some failure F ′.
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Proof. See Exercise 11.2.

Proof of the Sequentialization Theorem 11.1

We follow the approach of the Atomicity Theorem 8.1.

Step 1 We first introduce the notion of a good computation of the distributed
program S. We call a computation of S good if the components S1, . . ., Sn of
S are activated in the following order:

(i) first execute the subprograms S1,0, . . ., Sn,0 of S1, . . ., Sn, respectively,
in that order, for as long as possible;

(ii) in case no failure or divergence arises,

– pick up a pair of matching generalized guards gi,j and gk,ℓ whose
Boolean parts evaluate to true, contained, respectively, in processes
Si and Sk with i < k;

– perform the communication, and
– execute the subprograms Si,j and Sk,ℓ of Si and Sk, respectively, in

that order, for as long as possible;

(iii) repeat step (ii) for as long as possible;
(iv) in case no failure or divergence arises, exit the main loop wherever

possible, in the order determined by the processes’ indices.

A transition sequence is good if it is a prefix of a good computation.

Step 2 We now define a notion of equivalence between the computations of
S and T (S). Let η be a computation of S and ξ a computation of T (S).

We say that η and ξ are 1-equivalent if

(i) η and ξ start in the same state,
(ii) for all states σ such that σ |= TERM , η terminates in σ iff ξ terminates

in σ,
(iii) for all states σ such that σ |= ¬TERM , η ends in a deadlock with state

σ iff ξ terminates in σ,
(iv) η ends in a failure iff ξ ends in a failure,
(v) η is infinite iff ξ is infinite.

We prove the following two claims.

• Every computation of T (S) is 1-equivalent to a good computation of S;
• every good computation of S is 1-equivalent to a computation of T (S).

Consider a computation ξ of T (S) starting in a state σ. We construct
a 1-equivalent good computation η of S which proceeds through the same
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sequence of states as ξ (disregarding their repetitions) by analyzing the suc-
cessive transitions of ξ. Let < S′, σ′ > be a configuration occurring in ξ. Then
S′ is of one of the following forms:

1. R; S′′ where R is a substatement of the process Si,
2. do ⊓⊔(i,j,k,ℓ)∈Γ Bi,j ∧ Bk,ℓ → Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ od,
3. Eff(αi,j , αk,ℓ); S′′ for some i, j, k, ℓ and S′′,
4. E.

The initial configuration of η is < S, σ >. Let < R′, σ′ > be the last
constructed configuration of η and let < S′, σ′ > → < T, σ′′ > be the
currently analyzed transition of ξ.

(a) If S′ is of the form 1, then we obtain the next configuration of η by
activating in < R′, σ′ > the process Si so that it executes the action
performed in < S′, σ′ > → < T, σ′′ > , by using transition rule (xvii)
introduced in Section 7.2.

(b) If S′ is of the form 2 and T is of the form 3, then we obtain the next config-
uration of η by activating in < R′, σ′ > processes Si and Sk so that they
take part in a communication between αi,j and αk,l, by using transition
axiom (xxv) introduced in the previous section. Let the resulting state
be τ . In this case the next configuration of ξ is < T, σ′′ > → < S′′, τ >
and we skip its analysis.

(c) If S′ is of the form 2 and T is of the form 4, then we obtain the next
k configurations of η, where k ∈ {0, . . ., n}, by activating in the order
determined by their indices those processes Si for which σ |=

∧mi

j=1 ¬Bi,j

holds (k denotes the total number of such processes). All these processes
exit their main loops; so for each of them we use transition axiom (xxiv)
introduced in the previous section.

We first prove that a sequence so constructed is indeed a computation
of S. To this end we need to check that adjacent configurations form legal
transitions. Case (a) is clear. For case (b) it suffices to note that the transition
< S′, σ′ > → < T, σ′′ > in ξ could take place only when σ′ |= Bi,j ∧ Bk,ℓ;
thus condition 1 for using transition axiom (xxv) is satisfied.

Finally, case (c) arises when the transition < S′, σ′ > → < T, σ′′ > con-
sists of the main loop exit within T (S). By assumption, ξ properly terminates.
By construction, for each activated process Si the corresponding condition
for using transition axiom (xxiv) is satisfied.

In the above construction the case when S′ is of the form 3 does not arise
because in case (b) we skipped the analysis of one transition.

Thus η is a computation of S and by construction it is a good one.

To see that ξ and η are 1-equivalent, notice that conditions (i), (iv) and (v)
are already satisfied. Moreover, if in case (c) σ |= TERM holds, then j = n
so all processes S1, . . ., Sn exit their main loops and η terminates. Also, if in
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case (c) σ |= ¬TERM holds, then η ends in a deadlock. Thus conditions (ii)
and (iii) are also satisfied.

We have thus established the first of the two claims formulated at the
beginning of this step. The second claim follows by noticing that the above
construction in fact establishes a 1-1 correspondence between all computa-
tions of T (S) and all good computations of S.

Step 3 We define a notion of equivalence between the computations of S.
Let η and ξ be computations of S.

We say that η and ξ are 2-equivalent if

(i) η and ξ start in the same state,
(ii) for all states σ, η terminates in σ iff ξ terminates in σ,
(iii) η ends in a failure or is infinite iff ξ ends in a failure or is infinite,
(iv) for all states σ, η ends in a deadlock with state σ iff ξ ends in a deadlock

with state σ.

For example, if η and ξ start in the same state, η ends in a failure and ξ
is infinite, then η and ξ are 2-equivalent.

Step 4 We prove that every computation of S is 2-equivalent to a good
computation of S.

First, we define a number of auxiliary concepts concerning computations
of S. Let ξ be a computation of S and let C be a configuration in ξ. Denote
by ξ[C] the prefix of ξ ending in C.

We say that a process Si is passive after C in ξ if it is not activated in ξ
after C. Note that Si is passive after C in ξ iff

• for a subprogram R of Si, in every configuration of ξ after C, the ith
process is of the form at(R,Si).

We say that a process Si is abandoned in ξ if for some configuration C in
ξ

• Si is passive after C in ξ,
• i is the least index in {1, . . . , n} such that a private action of Si can be

executed in C.

Let C(Si) be the first such configuration in ξ. Note that C(Si) is not the last
configuration of ξ.

Consider two processes Si and Sj that are abandoned in ξ. We say that
Si is abandoned before Sj in ξ if C(Si) occurs in ξ before C(Sj).

We now define an operation on computations of S. Let ξ be such a compu-
tation and assume that Si is a process that is abandoned in ξ. A computation
η of S is obtained by inserting a step of Si in ξ as follows. Denote C(Si) by

C. Suppose that C
i
→ D for some D.
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If D is a failure, then η is defined as ξ[C] followed by the transition C
i
→ D.

Otherwise, let ξ′ be the suffix of ξ starting at the first configuration of ξ
after C. Perform the following two steps:

• In all configurations of ξ′, change the ith process to the ith process of D,
• in all states of ξ′ change the values of the variables in change(Si) to their

values in the state of D.

Let γ be the resulting computation. η is now defined as ξ[C] followed by

C
i
→ D followed by γ.
It is easy to see that due to disjointness of the processes, η is indeed a

computation of S that starts in the same state as ξ (see Exercise 11.3).
We call a computation of S almost good if no process Si is abandoned in

it. To establish the claim formulated at the beginning of this step we prove
two simpler claims.

Claim 1 Every computation ξ of S is 2-equivalent to an almost good com-
putation of S.

Proof of Claim 1. Suppose ξ is a terminating computation or ends in a dead-
lock. Then no process is abandoned in it, so it is almost good.

Suppose ξ is a computation that ends in a failure or is infinite. Assume ξ is
not almost good. Let P1, . . ., Pk ∈ {S1, . . ., Sn}, where k ≥ 1, be the list of all
processes abandoned in ξ, ordered in such a way that each Pj is abandoned
in ξ before Pj+1.

Repeat for as long as possible the following steps, where initially γ = ξ
and j = 1:

(i) insert in γ for as long as possible a step of Pj consisting of a private
action,

(ii) rename γ to the resulting computation and increment j.

Suppose that for any γ and j step (i) does not insert any failure in γ and
terminates. Then after executing steps (i) and (ii) j times, Pj+1, . . ., Pk is
the list of all processes abandoned in the resulting computation. Thus after
k repetitions of steps (i) and (ii) the resulting computation γ is almost good
and either ends in a failure or is infinite.

Otherwise for some j step (i) inserts a failure in γ or does not terminate.
Then the resulting computation is also almost good and either ends in a
failure or is infinite.

In both cases by definition the resulting computation is 2-equivalent to ξ.
⊓⊔

Claim 2 Every almost good computation ξ of S is 2-equivalent to a good
computation of S.
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Proof of Claim 2. We distinguish three cases.

Case 1 ξ is properly terminating or ends in a deadlock.
Then repeatedly using the Commutativity Lemma 11.2 we can transform

ξ to a 2-equivalent good computation (see Exercise 11.4).
Case 2 ξ ends in a failure.

Then repeatedly using the Commutativity Lemma 11.2 and the Failing
Lemma 11.3 we can transform ξ to a 2-equivalent failing computation (see
Exercise 11.4).
Case 3 ξ is infinite.

Suppose that ξ starts in a state σ. We first construct a series ξ1, ξ2, . . . of
good transition sequences starting in < S, σ > such that for every k > 0

• ξk+1 extends ξk,
• ξk+1 can be extended to an infinite almost good computation of S.

We proceed by induction. Define ξ1 to be < S, σ >.
Suppose that ξk has been defined (k > 0) and let γ be an extension of ξk

to an infinite almost good computation of S.
Let C be the last configuration of ξk. Suppose that there exists a transition

C
i
→ D in which the process Si executes a private action. Choose the least

such i. Let F
A
→ G with A = i be the first transition in γ after C in which

the process Si is activated. Such a transition exists, since in γ no process is
abandoned.

If such a transition C
i
→ D does not exist, then in C only the main loops’

exits or communications can be performed. Let F
A
→ G with A = (i, j) be the

first transition in γ after C in which a communication is performed. Such a
transition exists since γ is infinite.

By repeatedly applying the Commutativity Lemma 11.2, we obtain an

infinite almost good computation with a transition C
A
→ D′. Define now ξk+1

as ξk followed by C
A
→ D′.

Now using the series ξ1, ξ2, . . ., we can construct an infinite good com-
putation of S starting in σ by defining its kth configuration to be the kth
configuration of ξk. ⊓⊔

Claims 1 and 2 imply the claim formulated at the beginning of this step
because 2-equivalence is an equivalence relation.

Step 5 Combining the claims of Steps 2 and 4 we obtain by virtue of the
introduced notions of 1- and 2-equivalence the proof of the claims (i)–(iii) of
the theorem. ⊓⊔
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11.4 Verification

The three variants of semantics of distributed programs yield in the by now
standard way three notions of program correctness: partial correctness, weak
total correctness and total correctness.

For the verification of these correctness properties we follow Apt [1986]
and introduce particularly simple proof rules which we obtain from the Se-
quentialization Theorem 11.1. Throughout this section we adopt the notation
of the previous section. In particular, S stands for a distributed program of
the form [S1‖. . .‖Sn] where each process Si for i ∈ {1, . . . , n} is of the form

Si ≡ Si,0; do ⊓⊔mi

j=1 Bi,j ;αi,j → Si,j od.

Partial Correctness

Consider first partial correctness. We augment the proof system PN for partial
correctness of nondeterministic programs by the following rule:

RULE 34: DISTRIBUTED PROGRAMS

{p} S1,0; . . .; Sn,0 {I},
{I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ

{p} S {I ∧ TERM}

We call an assertion I that satisfies the premises of the above rule a
global invariant relative to p. Also, we refer to a statement of the form
Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ as a joint transition (within S) and to Bi,j ∧ Bk,ℓ

as the Boolean condition of this transition. An execution of a joint transition
corresponds to a joint execution of a pair of branches of the main loops with
matching generalized guards.

Informally the above rule can be phrased as follows. If I is established
upon execution of all the Si,0 sections and is preserved by each joint tran-
sition started in a state satisfying its Boolean condition, then I holds upon
termination. This formulation explains why we call I a global invariant. The
word “global” relates to the fact that we reason here about all processes
simultaneously and consequently adopt a “global” view.

When proving that an assertion is a global invariant we usually argue
informally, but with arguments that can easily be formalized in the underlying
proof system PN.
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Weak Total Correctness

Here we consider weak total correctness, which combines partial correctness
with absence of failures and divergence freedom. Consequently, we augment
the proof system TN for total correctness of nondeterministic programs by
the following strengthening of the distributed programs rule 34:

RULE 35: DISTRIBUTED PROGRAMS II

(1) {p} S1,0; . . .; Sn,0 {I},
(2) {I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ,
(3) {I ∧ Bi,j ∧ Bk,ℓ ∧ t = z} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {t < z}

for all (i, j, k, ℓ) ∈ Γ,
(4) I → t ≥ 0

{p} S {I ∧ TERM}

where t is an integer expression and z is an integer variable not appearing in
p, t, I or S.

Total Correctness

Finally, consider total correctness. We must take care of deadlock freedom.
We now augment the proof system TN for total correctness of nondeterminis-
tic programs by a strengthened version of the distributed programs II rule 35.
It has the following form:

RULE 36: DISTRIBUTED PROGRAMS III

(1) {p} S1,0; . . .; Sn,0 {I},
(2) {I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ,
(3) {I ∧ Bi,j ∧ Bk,ℓ ∧ t = z} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {t < z}

for all (i, j, k, ℓ) ∈ Γ,
(4) I → t ≥ 0,
(5) I ∧ BLOCK → TERM

{p} S {I ∧ TERM}

where t is an integer expression and z is an integer variable not appearing in
p, t, I or S.
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The new premise (5) allows us to deduce additionally that S is deadlock
free relative to p, and consequently to infer the conclusion in the sense of
total correctness.

Proof Systems

Also, we use the following auxiliary rules which allow us to present the proofs
in a more convenient way.

RULE A8:
I1 and I2 are global invariant relative to p

I1 ∧ I2 is a global invariant relative to p

RULE A9:
I is a global invariant relative to p,
{p} S {q}

{p} S {I ∧ q}

We use rule A8 in the proofs of partial correctness and rule A9 in the
proofs of partial, weak total and total correctness. Note that rule A8 has
several conclusions; so it is actually a convenient shorthand for a number of
closely related rules.

We thus use three proof systems: a proof system PDP for partial correct-
ness of d istributed programs, a proof system WDP for weak total correct-
ness of d istributed programs and a proof system TDP for total correctness
of d istributed programs. These systems consist of the following axioms and
proof rules.

PROOF SYSTEM PDP :
This system consists of the proof system PN augmented
by the group of axioms and rules 34, A8 and A9.

PROOF SYSTEM WDP :
This system consists of the proof system TN augmented
by the group of axioms and rules 35 and A9.

PROOF SYSTEM TDP :
This system consists of the proof system TN augmented
by the group of axioms and rules 36 and A9.
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Example 11.3. As a first application of the above proof systems we prove
the correctness of the program SR from Example 11.1. More precisely, we
prove

{M ≥ 1} SR {a[0 : M − 1] = b[0 : M − 1]}

in the sense of total correctness. As a global invariant relative to M ≥ 1 we
choose

I ≡ a[0 : i − 1] = b[0 : j − 1] ∧ 0 ≤ i ≤ M,

where a[0 : j − 1] = b[0 : j − 1] is an abbreviation for the assertion

∀(0 ≤ k < j) : a[k] = b[k] ∧ i = j.

As a termination function we choose t ≡ M − i.
In the program SR there is only one joint transition to consider, namely,

b[j] := a[i]; i := i + 1; j := j + 1

with the Boolean condition i 6= M ∧ j 6= M . Thus the premises of the
distributed programs III rule 36 amount to the following:

(1) {M ≥ 1} i := 0; j := 0 {I},
(2) {I ∧ i 6= M ∧ j 6= M} b[j] := a[i]; i := i + 1; j := j + 1 {I},
(3) {I ∧ i 6= M ∧ j 6= M ∧ t = z}

b[j] := a[i]; i := i + 1; j := j + 1
{t < z},

(4) I → t ≥ 0,
(5) (I ∧ ¬(i 6= M ∧ j 6= M)) → i = M ∧ j = M .

All these premises can be easily verified. Thus the distributed programs III
rule 36 together with the rule of consequence yields the desired correctness
result. ⊓⊔

Soundness

To establish soundness of the above three proof systems we establish first
soundness of the corresponding three proof rules for distributed programs.

Theorem 11.2. (Distributed Programs I) The distributed programs
rule 34 is sound for partial correctness.

Proof. Assume that all premises of rule 34 are true in the sense of partial
correctness. By the soundness for partial correctness of the composition rule
(rule 3) and of the rule of repetitive command (rule 31) we conclude

|= {p} T (S) {I ∧ BLOCK}. (11.1)
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Now

M[[S]]([[p]])

= {Sequentialization Theorem 11.1(i)}

M[[T (S)]]([[p]]) ∩ [[TERM ]]

⊆ {(11.1)}

[[I ∧ BLOCK]] ∩ [[TERM ]]

⊆ {[[I ∧ BLOCK]] ⊆ [[I]]}

[[I ∧ TERM ]];

that is,
|= {p} S {I ∧ TERM}.

This concludes the proof. ⊓⊔

Theorem 11.3. (Distributed Programs II) The distributed programs II
rule 35 is sound for weak total correctness.

Proof. The proof is similar to that of the Distributed Programs I Theo-
rem 11.2. Assume that all premises of rule 35 are true in the sense of total
correctness. By an argument analogous to the one presented in the proof of
Distributed Programs I Theorem 11.2 we obtain

|=tot {p} T (S) {I ∧ BLOCK}. (11.2)

Also, since the premises of the distributed programs II rule 35 include all
premises of the distributed programs rule 34 and total correctness implies
partial correctness, we have by Distributed Programs I Theorem 11.2

|= {p} S {I ∧ TERM}. (11.3)

Suppose now that σ |= p. Then by (11.2) {⊥, fail}iMtot [[T (S)]](σ) = ∅; so by
the Sequentialization Theorem 11.1 (ii) {⊥, fail} ∩Mwtot [[S]](σ) = ∅. This in
conjunction with (11.3) establishes

|=wtot {p} S {I ∧ TERM},

which concludes the proof. ⊓⊔

Finally, the soundness of the distributed programs III rule 36 is an imme-
diate consequence of the following lemma. Here, as in Chapter 9, a program
S is deadlock free relative to p if S cannot deadlock from any state σ for which
σ |= p.

Lemma 11.4. (Deadlock Freedom) Assume that I is a global invariant
relative to p; that is, I satisfies premises (1) and (2) above in the sense
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of partial correctness, and assume that premise (5) holds as well; that is,
I ∧ BLOCK → TERM . Then S is deadlock free relative to p.

Proof. As in the proof of the Distributed Programs I Theorem 11.2

|= {p} T (S) {I ∧ BLOCK};

so by the assumption and the soundness of the consequence rule

|= {p} T (S) {TERM}.

Thus,
M[[T (S)]](σ) ⊆ [[TERM ]]

for all σ such that σ |= p. Now by Sequentialization Theorem 11.1(iii) we get
the desired conclusion. ⊓⊔

We can now establish the desired result.

Theorem 11.4. (Distributed Programs III) The distributed programs III
rule 36 is sound for total correctness.

Proof. By the Distributed Programs II Theorem 11.3 and the Deadlock
Freedom Lemma 11.4. ⊓⊔

The following theorem summarizes the above results.

Theorem 11.5. (Soundness of PDP, WDP and TDP)

(i) The proof system PDP is sound for partial correctness of distributed
programs.

(ii) The proof system WDP is sound for weak total correctness of distributed
programs.

(iii) The proof system TDP is sound for total correctness of distributed pro-
grams.

Proof. See Exercise 11.6. ⊓⊔

A key to the proper understanding of the proof systems PDP, WDP and
TDP studied in this chapter is the Sequentialization Theorem 11.1 relating a
distributed program S to its transformed nondeterministic version T (S). This
connection allows us to prove the correctness of S by studying the correctness
of T (S) instead, and the distributed program rules 34, 35 and 36 do just this
—their premises refer to the subprograms of T (S) and not S.

As we saw in Section 10.6, the same approach could be used when dealing
with parallel programs. However, there such a transformation of a parallel
program into a nondeterministic program necessitates in general a use of
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auxiliary variables. This adds to the complexity of the proofs and makes
the approach clumsy and artificial. Here, thanks to the special form of the
programs, the transformation turns out to be very simple and no auxiliary
variables are needed. We can summarize this discussion by conceding that
the proof method presented here exploits the particular form of the programs
studied.

11.5 Case Study: A Transmission Problem

We now wish to prove correctness of the distributed program

TRANS ≡ [SENDER‖FILTER‖RECEIVER]

solving the transmission problem of Example 11.2. Recall that the process
SENDER is to transmit to the process RECEIVER through the process
FILTER a sequence of M characters represented as a section a[0 : M ]
of an array a of type integer → character. We have M ≥ 1 and
a 6∈ change(TRANS). For the transmission there is a channel input be-
tween SENDER and FILTER and a channel output between FILTER and
RECEIVER.

The task of FILTER is to delete all blanks ‘ ’ in the transmitted sequence.
A special character ‘∗’ is used to mark the end of the sequence; that is, we
have a[M − 1] = ‘‘∗’′. FILTER uses an array b of the same type as the array
a as an intermediate store. Upon termination of TRANS the result of the
transmission should be stored in the process RECEIVER in an array c of the
same type as the array a.

The program TRANS is a typical example of a transmission problem where
the process FILTER acts as an intermediary process between the processes
SENDER and RECEIVER.

We first formalize the correctness property we wish to prove about it. As
a precondition we choose

p ≡ M ≥ 1 ∧ a[M − 1] = ‘∗’ ∧ ∀(0 ≤ i < M − 1) : a[i] 6= ‘∗’.

To formulate the postcondition we need a function

delete : character∗ → character∗,

where character∗ denotes the set of all strings over the alphabet character.
This mapping is defined inductively as follows:

• delete(ε) = ε,
• delete(w.‘ ′) = delete(w),
• delete(w.a) = delete(w).a if a 6= ‘ ’.
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Here ε denotes the empty string, w stands for an arbitary string over char-
acter and a for an arbitrary symbol from character. The postcondition can
now be formulated as

q ≡ c[0 : j − 1] = delete(a[0 : M − 1]).

Our aim in this case study is to show

|=tot {p} TRANS {q}. (11.4)

We proceed in four steps.

Step 1. Decomposing Total Correctness

We use the fact that a proof of total correctness of a distributed program can
be decomposed into proofs of

• partial correctness,
• absence of failures and of divergence,
• deadlock freedom.

Step 2. Proving Partial Correctness

We first prove (11.4) in the sense of partial correctness; that is, we show

|= {p} TRANS {q}.

To this end we first need an appropriate global invariant I of TRANS relative
to p. We put

I ≡ b[0 : in − 1] = delete(a[0 : i − 1])
∧ b[0 : out − 1] = c[0 : j − 1]
∧ out ≤ in.

Here in and out are the integer variables used in the process FILTER to point
at elements of the array b. We now check that I indeed satisfies the premises
of the distributed programs rule 34. Recall that these premises refer to the
transformed nondeterministic version T (TRANS) of the program TRANS:

T (TRANS) ≡ i := 0; in := 0; out := 0;
x := ‘ ’; j := 0; y := ‘ ’;
do i 6= M ∧ x 6= ‘∗’ → x := a[i]; i := i + 1;

if x = ‘ ’ → skip
⊓⊔ x 6= ‘ ’ → b[in] := x;
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in := in + 1
fi

⊓⊔ out 6= in ∧ y 6= ‘∗’ → y := b[out]; out := out + 1;
c[j] := y; j := j + 1

od.

(a) First we consider the initialization part. Clearly, we have

{p}
i := 0; in := 0; out := 0;
x := ‘ ’; j := 0; y := ‘ ’
{I}

as by convention a[0 : −1], b[0 : −1] and c[0 : −1] denote empty strings.

(b) Next we show that every communication along the channel input involving
the matching i/o commands input!a[i] and input?x preserves the invariant I.
The corresponding premise of the distributed programs rule 34 refers to the
first part of the do loop in T (TRANS):

{I ∧ i 6= M ∧ x 6= ‘∗’}
x := a[i]; i := i + 1;
if x = ‘ ’ → skip
⊓⊔ x 6= ‘ ’ → b[in] := x;

in := in + 1
fi
{I}.

We begin with the first conjunct of I; that is, b[0 : in−1] = delete(a[0 : i−1]).
By the definition of the mapping delete the correctness formulas

{b[0 : in − 1] = delete(a[0 : i − 1])}
x := a[i]; i := i + 1;
{b[0 : in − 1] = delete(a[0 : i − 2]) ∧ a[i − 1] = x}

and
{b[0 : in − 1] = delete(a[0 : i − 2]) ∧ a[i − 1] = x ∧ x = ‘ ’}
skip
{b[0 : in − 1] = delete(a[0 : i − 1])}

and
{b[0 : in − 1] = delete(a[0 : i − 2]) ∧ a[i − 1] = x ∧ x 6= ‘ ’}
b[in] := x; in := in + 1
{b[0 : in − 1] = delete(a[0 : i − 1])}

hold. Thus the alternative command rule and the composition rule yield

{b[0 : in − 1] = delete(a[0 : i − 1])}
x := a[i]; i := i + 1;
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if x = ‘ ’ → skip
⊓⊔ x 6= ‘ ’ → b[in] := x;

in := in + 1
fi
{b[0 : in − 1] = delete(a[0 : i − 1])}.

Now we consider the last two conjuncts of I; that is,

b[0 : out − 1] = c[0 : j − 1] ∧ out ≤ in.

Since this assertion is disjoint from the program part considered here (the
assignment b[in] := x does not modify the section b[0 : out−1]), we can apply
the invariance rule A6 to deduce that I is preserved altogether.

(c) Next we show that also every communication along the channel output in-
volving the matching i/o commands output!b[out] and output?y preserves the
invariant I. The corresponding premise of the distributed programs rule 34
refers to the second part of the do loop in T (TRANS):

{I ∧ out 6= in ∧ y 6= ‘∗’}
y := b[out]; out := out + 1;
c[j] := y; j := j + 1
{I}.

First we consider the last two conjuncts of I. We have

{b[0 : out − 1] = c[0 : j − 1] ∧ out ≤ in ∧ out 6= in}
y := b[out]; out := out + 1;
c[j] := y; j := j + 1
{b[0 : out − 1] = c[0 : j − 1] ∧ out ≤ in}.

Since the first conjunct of I is disjoint from the above program part, the
invariance rule rule A6 yields that the invariant I is preserved altogether.

Thus we have shown that I is indeed a global invariant relative to p.
Applying the distributed programs rule 34 we now get

|= {p} TRANS {I ∧ TERM},

where
TERM ≡ i = M ∧ x = ‘∗’ ∧ out = in ∧ y = ‘∗’.

By the consequence rule, the correctness formula (11.4) holds in the sense of
partial correctness.

Step 3. Proving Absence of Failures and of Divergence

We now prove (11.4) in the sense of weak total correctness; that is,
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|=wtot {p} TRANS {q}.

Since in TRANS the only alternative command consists of a complete case
distinction, no failure can occur. Thus it remains to show the absence of
divergence. To this end we use the following bound function:

t ≡ 2 · (M − i) + in − out.

Here M − i is the number of characters that remain to be transmitted and
in − out is the number of characters buffered in the process FILTER. The
factor 2 for M − i guarantees that the value of t decreases if a communication
along the channel input with i := i + 1; in := in + 1 as part of the joint
transition occurs. A communication along the channel output executes out :=
out + 1 without modifying i and in and thus it obviously decrements t.

However, to apply the distributed programs rule 35 we need to use an
invariant which guarantees that t remains nonnegative. The invariant I of
Step 2 is not sufficient for this purpose since the values of M and i are not
related. Let us consider

I1 ≡ i ≤ M ∧ out ≤ in.

It is straightforward to prove that I1 is a global invariant relative to p with
I1 → t ≥ 0. Thus rule 35 is applicable and yields

|=wtot {p} TRANS {I1 ∧ TERM}.

Applying rule A9 to this result and the previous invariant I we now get

|=wtot {p} TRANS {I ∧ I1 ∧ TERM},

which implies (11.4) in the sense of weak total correctness.

Step 4. Proving Deadlock Freedom

Finally, we prove deadlock freedom. By the Deadlock Freedom Lemma 11.4,
it suffices to find a global invariant I ′ relative to p for which

I ′ ∧ BLOCK → TERM (11.5)

holds. For the program TRANS we have

BLOCK ≡ (i = M ∨ x = ‘∗’) ∧ (out = in ∨ y = ‘∗’)

and, as noted before,
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TERM ≡ i = M ∧ x = ‘∗’ ∧ out = in ∧ y = ‘∗’.

We exhibit I ′ “in stages” by first introducing global invariants I2, I3 and I4

relative to p with

I2 → (i = M ↔ x = ‘∗’), (11.6)

I3 ∧ i = M ∧ x = ‘∗’ ∧ out = in → y = ‘∗’, (11.7)

I4 ∧ i = M ∧ x = ‘∗’ ∧ y = ‘∗’ → out = in. (11.8)

Then we put
I ′ ≡ I2 ∧ I3 ∧ I4.

By rule A8 I ′ is also a global invariant relative to p. Note that each of the
equalities used in (11.6), (11.7) and (11.8) is a conjunct of TERM ; (11.6),
(11.7) and (11.8) express certain implications between these conjuncts which
guarantee that I ′ indeed satisfies (11.5).

It remains to determine I2, I3 and I4. We put

I2 ≡ p ∧ (i > 0 ∨ x = ‘∗’ → x = a[i − 1]).

I2 relates variables of the processes SENDER and FILTER. It is easy to check
that I2 is indeed a global invariant relative to p. Note that (11.6) holds.

Next, we consider

I3 ≡ I ∧ p ∧ (j > 0 → y = c[j − 1]).

The last conjunct of I3 states a simple property of the variables of the pro-
cess RECEIVER. Again I3 is a global invariant relative to p. The following
sequence of implications proves (11.7):

I3 ∧ i = M ∧ x = ‘∗’ ∧ out = in

→ {definition of I}

I3 ∧ c[0 : j − 1] = delete(a[0 : M − 1])

→ {p implies a[0 : M − 1] = ‘∗’}

I3 ∧ c[j − 1] = ‘∗’ ∧ j > 0

→ {definition of I3}

y = ‘∗’.

Finally, we put

I4 ≡ I ∧ p ∧ (y = ‘∗’ → c[j − 1] = ‘∗’).

Here as well, the last conjunct describes a simple property of the variables
of the process RECEIVER. It is easy to show that I4 is a global invariant
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relative to p. We prove the property (11.8):

I4 ∧ i = M ∧ x = ‘∗’ ∧ y = ‘∗’

→ {definition of I4}

I4 ∧ c[j − 1] = ‘∗’

→ {definition of I and p}

I4 ∧ b[out − 1] = a[M − 1]

→ {there is only one ‘∗’ in a[0 : M − 1],

namely a[M − 1], so the first conjunct

of I implies b[in − 1] = a[M − 1]}

out = in.

We have thus proved (11.5), that is, the deadlock freedom of the program
TRANS. Together with the result from Step 3 we have established the desired
correctness formula (11.4) in the sense of total correctness.

11.6 Exercises

11.1. Let S be a distributed program. Prove that if < S, σ > → < S1, τ >,
then S1 is also a distributed program.

11.2. Let S ≡ [S1‖. . .‖Sn] be a distributed program.

(i) Prove the Commutativity Lemma 11.2.
(ii) Prove that for distinct i, j, k, ℓ ∈ {1, . . . , n} with i < j and k < ℓ, the

relations
(i,j)
−→ and

(k,ℓ)
−→ commute.

(iii) Prove the Failure Lemma 11.3.

Hint. Use the Change and Access Lemma 10.4.

11.3. Consider Step 4 of the proof of the Sequentialization Theorem 11.1.
Prove that the result of inserting a step of a process in a computation of S
is indeed a computation of S.
Hint. Use the Change and Access Lemma 10.4.

11.4. Prove Claim 2 in the proof of the Sequentialization Theorem 11.1 when
ξ is terminating or ends in a deadlock or ends in a failure.

11.5. Prove the Change and Access Lemma 3.4 for distributed programs and
the partial correctness, weak total correctness and total correctness seman-
tics.
Hint. Use the Sequentialization Theorem 11.1.

11.6. Prove the Soundness of PDP, WDP and TDP Theorem 11.5.
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11.7. Given a section a[1 : n] of an array a of type integer → integer
the process CENTER should compute in an integer variable x the weighted
sum

∑n
i=1 wi ·a[i]. We assume that the weights wi are stored in a distributed

fashion in separate processes Pi, and that the multiplications are carried out
by the processes Pi while the addition is carried out by the process CENTER.

Thus CENTER has to communicate in an appropriate way with these
processes Pi. We stipulate that for this purpose communication channels
linki are available and consider the following distributed program:

WSUM ≡ [CENTER ‖ P1 ‖ ... ‖ Pn],

where

CENTER ≡ x := 0; to[1] := true; ... ; to[n] := true;
from[1] := true; ... ; from[n] := true;

do to[1]; link!a[1] → to[1] := false;
................................................
to[n]; link!a[n] → to[n] := false;

from[1]; link?y → x := x + y; from[1] := false;
............................................................................
from[n]; link?y → x := x + y; from[n] := false;

od

and

Pi ≡ reci := false; senti := false;
do ¬reci; link?zi → reci := true

reci ∧ ¬senti; link!wi · zi → senti := true
od

for i ∈ {1, ..., n}. The process CENTER uses Boolean control variables to[i]
and from[i] of two arrays to and from of type integer → Boolean. Addi-
tionally, each process Pi uses two Boolean control variables reci und senti.

Prove the total correctness of WSUM :

|=tot {true} WSUM {x =
∑n

i=1 wi · a[i]}.

11.8. Let X0 and Y0 be two disjoint, nonempty finite sets of integers. We
consider the following problem of set partition due to Dijkstra [1977] (see also
Apt, Francez and de Roever [1980]): the union X0∪Y0 should be partitioned
in two sets X and Y such that X has the same number of elements as X0,
Y has the same number of elements as Y0 and all elements of X are smaller
than those of Y .

To solve this problem we consider a distributed program SETPART con-
sisting of two processes SMALL and BIG which manipulate local variables
X and Y for finite sets of integers and communicate with each other along
channels big and small:

SETPART ≡ [SMALL ‖ BIG ].
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Initially, the sets X0 and Y0 are stored in X and Y . Then the process SMALL
repeatedly sends the maximum of the set stored in X along the channnel big
to the process BIG. This process sends back the minimum of the updated set
Y along the channel small to the process SMALL. This exchange of values
terminates as soon as the process SMALL gets back the maximum just sent
to BIG.

Altogether the processes of SETPART are defined as follows:

SMALL ≡ more := true; send := true;
mx := max(X);
do more ∧ send; big ! mx → send := false
⊓⊔ more ∧ ¬send; small ? x →

if mx = x → more := false
⊓⊔ mx 6= x → X := X − {mx} ∪ {x};

mx := max(X);
send := true

fi
od,

BIG ≡ go := true;
do go; big ? y → Y := Y ∪ {y};

mn := min(Y );
Y := Y − {mn}

⊓⊔ go; small ! mn → go := (mn 6= y)
od.

The Boolean variables more, send and go are used to coordinate the behavior
of SMALL and BIG. In particular, thanks to the variable send the processes
SMALL and BIG communicate in an alternating fashion along the channels
big and small. The integer variables mx, x,mn, y are used to store values
from the sets X and Y .

Prove the total correctness of the program SETPART for the precondition

p ≡ X ∩ Y = ∅ ∧ X 6= ∅ ∧ Y 6= ∅ ∧ X = X0 ∧ Y = Y0

and the postcondition

q ≡ X ∪ Y = X0 ∪ Y0

∧ card X = card X0 ∧ card Y = card Y0

∧ max(X) < min(Y ).

Recall from Section 2.1 that for a finite set A, card A denotes the number of
its elements.

11.9. Extend the syntax of distributed programs by allowing the clauses
defining nondeterministic programs in Chapter 10 in addition to the clause
for parallel composition. Call the resulting programs general distributed pro-
grams.
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(i) Extend the definition of semantics to general distributed programs.
(ii) Let R ≡ S0; [S1‖. . .‖R0; Si‖. . .‖Sn] be a general distributed program

where R0 and S0 are nondeterministic programs. Consider the general
distributed program T ≡ S0; R0; [S1‖. . .‖Si‖. . .‖Sn]. Prove that

M[[R]] = M[[T ]].

What can be stated for Mwtot and Mtot?

Hint. Use the Sequentialization Theorem 11.1 and the Input/Output
Lemma 10.3.

11.7 Bibliographic Remarks

We have studied here distributed programs that can be defined in a simple
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Proof systems for the verification of CSP programs were first introduced
in Apt, Francez, and de Roever [1980], and in Levin and Gries [1981]. These
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chapter is due to Apt [1986]. The basic idea is to avoid the complex coop-
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program can indeed be transformed into a program in this subset called its
normal form. The price of this transformation is that it introduces additional
control variables into the normal form program in the same way as program
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counter variables were introduced to transform parallel programs into non-
deterministic ones in Section 10.6.

For CSP programs that manipulate a finite state space, behavioral prop-
erties can be verified automatically using the so-called FDR model checker,
a commercially available tool, see Roscoe [1994] and Formal Systems (Eu-
rope) Ltd. [2003]. For general CSP programs the compositional verification
techniques of Zwiers [1989] can be used. See also de Roever et al. [2001].

Research on CSP led to the design of the programming language OCCAM,
see INMOS [1984], for distributed transputer systems. A systematic devel-
opment of OCCAM programs from specifications has been studied as part
of the European basic research project ProCoS (Provably Correct Systems),
see Bowen et al. [1996] for an overview and the papers by Schenke [1999],
Schenke and Olderog [1999], and Olderog and Rössig [1993] for more details.

CSP has been combined with specification methods for data (and time)
to integrated specification formalisms for reactive (and real-time) systems.
Examples of such combinations are CSP-OZ by Fischer [1997], Circus by
Woodcock and Cavalcanti [2002], and, for the case of real-time, TCOZ by
Mahony and Dong [1998] and CSP-OZ-DC by Hoenicke and Olderog [2002]
and Hoenicke [2006]. For applications of CSP-OZ see the papers by Fischer
and Wehrheim [1999], Möller et al. [2008], and Basin et al. [2007]. For auto-
matic verification of CSP-OZ-DC specifications against real-time properties
we refer to Meyer et al. [2008].
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A S WE HAVE seen in the zero search example of Chapter 1, fairness is

an important hypothesis in the study of parallel programs. Fairness

models the idea of “true parallelism,” where every component of a parallel

program progresses with unknown, but positive speed. In other words, every

component eventually executes its next enabled atomic instruction.

Semantically, fairness can be viewed as an attempt at reducing the amount

of nondeterminism in the computations of programs. Therefore fairness can

be studied in any setting where nondeterminism arises. In this chapter we

study fairness in the simplest possible setting of this book, the class of non-

deterministic programs studied in Chapter 10.

Since parallel and distributed programs can be transformed into nonde-

terministic ones (see Sections 10.6 and 11.3), the techniques presented here

407
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can in principle be applied to the study of fairness for concurrent programs.

However, a more direct approach is possible that does not involve any pro-

gram transformations. The precise presentation is beyond the scope of this

edition of the book.

In Section 12.1 we provide a rigorous definition of fairness. The assump-

tion of fairness leads to so-called unbounded nondeterminism; this makes

reasoning about fairness difficult. In Section 12.2 we outline an approach to

overcome this difficulty by reducing fair nondeterminism to usual nondeter-

minism by means of a program transformation.

To cope with the unbounded nondeterminism induced by fairness, this

transformation uses an additional programming construct: the random as-

signment. In Section 12.4 semantics and verification of nondeterministic pro-

grams in presence of random assignment are discussed. In Section 12.5 ran-

dom assignments are used to construct an abstract scheduler FAIR that

exactly generates all fair computations. We also show that two widely used

schedulers, the round robin scheduler and a scheduler based on queues, are

specific instances of FAIR.

In Section 12.6 we define the program transformation announced in Sec-

tion 12.2 by embedding the scheduler FAIR into a given nondeterministic

program. In Section 12.7 this transformation is used to develop a proof rule

dealing with fairness.

We demonstrate the use of this proof rule in two case studies. In Sec-

tion 12.8 we apply this proof rule in a case study that deals with a nondeter-

ministic version of the zero search program of Chapter 1, and in Section 12.9

we prove correctness of a nondeterministic program for the asynchronous

computation of fixed points. In both cases the assumption of fairness is cru-

cial in the termination proof.
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12.1 The Concept of Fairness

To illustrate the concept of fairness in the setting of nondeterministic pro-
grams, consider the program

PU1 ≡ signal := false;
do ¬signal → “print next line”
⊓⊔ ¬signal → signal := true
od.

The letters P and U in the program name PU1 stand for printer and user ; the
first guarded command is meant to represent a printer that continuously out-
puts a line from a file until the user, here represented by the second guarded
command, signals that it should terminate. But does the printer actually
receive the termination signal? Well, assuming that the user’s assignment
signal := true is eventually executed the program PU1 terminates.

However, the semantics of nondeterministic programs as defined in Chap-
ter 10 does not guarantee this. Indeed, it permits infinite computations that
continuously select the first guarded command. To enforce termination one
has to assume fairness.

Often two variants of fairness are distinguished. Weak fairness requires
that every guarded command of a do loop, which is from some moment on
continuously enabled, is activated infinitely often. Under this assumption a
computation of PU1 cannot forever activate its first component (the printer)
because the second command (the user) is continuously enabled. Thus the
assignment signal := true of PU1 is eventually executed. This leads to
termination of PU1.

PU1 is a particularly simple program because the guards of its do loop
are identical. Thus, as soon as this guard becomes false, the loop is certain
to terminate. Loops with different guards can exhibit more complicated com-
putations. Consider, for example, the following variant of our printer-user
program:

PU2 ≡ signal := false; full-page := false; ℓ := 0;
do ¬signal → “print next line”;

ℓ := (ℓ + 1) mod 30;
full-page := ℓ = 0

⊓⊔ ¬signal ∧ full-page → signal := true
od.

Again, the printer, represented by the first command, continuously outputs
a line from a file until the user, represented by the second command, signals
that it should terminate. But the user will issue the termination signal only if
the printer has completed its current page. We assume that each page consists
of 30 lines, which are counted modulo 30 in the integer variable ℓ.

What about termination of PU2 ? Since the guard “full-page” of the second
command is never continuously enabled, the assumption of weak fairness
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does not rule out an infinite computation where only the first command is
activated. Under what assumption does PU2 terminate, then? This question
brings us to the notion of strong fairness; it requires that every guarded
command that is enabled infinitely often is also activated infinitely often.

Under this assumption, a computation of PU2 cannot forever activate its
first command because the guard “full-page” of the second command is then
infinitely often enabled. Thus the assignment signal := true is eventually
executed, causing termination of PU2.

In this book, we understand by fairness the notion of strong fairness. We
investigate fairness only for the class of nondeterministic programs that we
call one-level nondeterministic programs. These are programs of the form

S0; do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od,

where S0, S1, . . ., Sn are while programs.

Selections and Runs

Let us now be more precise about fairness. Since it can be expressed exclu-
sively in terms of enabled and activated components, we abstract from all
other details in computations and introduce the notions of selection and run.
This simplifies the definition and subsequent analysis of fairness, both here
and later for parallel programs.

A selection (of n components) is a pair

(E, i)

consisting of a nonempty set E ⊆ {1, . . . , n} of enabled components and an
activated component i ∈ E. A run (of n components) is a finite or infinite
sequence

(E0, i0). . .(Ej , ij). . .

of selections.
A run is called fair if it satisfies the following condition:

∀(1 ≤ i ≤ n) : (
∞

∃j ∈ N : i ∈ Ej →
∞

∃j ∈ N : i = ij).

The quantifier
∞

∃ stands for “there exist infinitely many,” and N denotes the
set {0, 1, 2, 3, . . .}. Thus, in a fair run, every component i which is enabled
infinitely often, is also activated infinitely often. In particular, every finite
run is fair.

Next, we link runs to the computations of one-level nondeterministic pro-
grams

S ≡ S0; do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od



12.1 The Concept of Fairness 411

defined above. A transition

< Tj , σj > → < Tj+1, σj+1 >

in a computation of S is called a loop transition if

Tj ≡ do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od and σj |=
n∨

i=1

Bi.

The selection (Ej , ij) of a loop transition is given by

Ej = {i ∈ {1, . . . , n} | σj |= Bi)}

and
Tj+1 ≡ Sij

; Tj ,

meaning that Ej is the set of indices i of enabled guards Bi and ij is the
index of the command activated in the transition. Note that Ej 6= ∅.

The run of a computation of S

ξ :< S, σ >=< T0, σ0 > → . . . → < Tj , σj > → . . .

is defined as the run
(Ej0 , ij0). . .(Ejk

, ijk
). . .

recording all selections of loop transitions in ξ. Here j0 < . . . < jk < . . . is
the subsequence of indices j ≥ 0 picking up all loop transitions

< Tjk
, σjk

> → < Tjk+1, σjk+1 >

in ξ. Thus computations that do not pass through any loop transition yield
the empty run. A run of a program S is the run of one of its computations.

A computation is fair if its run is fair. Thus for fairness only loop transitions
are relevant; transitions inside the deterministic parts S0, S1, . . ., Sn of S do
not matter. Note that every finite computation is fair.

Example 12.1. To practice with this definition, let us look at the program
PU1 again. A computation of PU1 that exclusively activates the first com-
ponent (the printer) yields the run

({1, 2}, 1)({1, 2}, 1). . .({1, 2}, 1). . . .

Since the index 2 (representing the second component) is never activated, the
run and hence the computation is not fair. Every fair computation of PU1 is
finite, yielding a run of the form

({1, 2}, 1). . .({1, 2}, 1)({1, 2}, 2).
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⊓⊔

Fair Nondeterminism Semantics

The fair nondeterminism semantics of one-level nondeterministic programs
S is defined as follows where σ is a proper state:

Mfair [[S]](σ) = {τ |< S, σ > →∗ < E, τ >}
∪ {⊥ | S can diverge from σ in a fair computation}
∪ {fail | S can fail from σ}.

We see that Mfair [[S]] is like Mtot [[S]] except that only fair computations are
considered. Notice that this affects only the diverging computations yielding
⊥.

How does this restriction to fair computations affect the results of pro-
grams? The answer is given in the following example.

Example 12.2. Consider a slight variation of the program PU1, namely

PU3 ≡ signal := false; count := 0;
do ¬signal → “print next line”;

count := count + 1
⊓⊔ ¬signal → signal := true
od.

The variable count counts the number of lines printed. Let σ be a state
with σ(count) = 0 and σ(signal) = true. For i ≥ 0 let σi be as σ but with
σi(count) = i. Ignoring the possible effect of the command “print next line”,
we obtain

Mtot [[PU3]](σ) = {σi | i ≥ 0} ∪ {⊥}

but
Mfair [[PU3]](σ) = {σi | i ≥ 0}.

We see that under the assumption of fairness PU3 always terminates (⊥ is
not present) but still there are infinitely many final states possible: σi with
i ≥ 0. This phenomenon differs from the bounded nondeterminism proved for
Mtot in the Bounded Nondeterminism Lemma 10.1; it is called unbounded
nondeterminism. ⊓⊔
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12.2 Transformational Semantics

Fair nondeterminism was introduced by restricting the set of allowed com-
putations. This provides a clear definition but no insight on how to reason
about or prove correctness of programs that assume fairness.

We wish to provide such an insight by applying the principle of transfor-
mational semantics:

Reduce the new concept (here fair nondeterminism semantics) to known con-
cepts (here total correctness semantics) with the help of program transforma-
tions.

In other words, we are looking for a transformation Tfair which transforms
each one-level nondeterministic program S into another nondeterministic pro-
gram Tfair (S) satisfying the semantic equation

Mfair [[S]] = Mtot [[Tfair (S)]]. (12.1)

The benefits of Tfair are twofold. First, it provides us with information on how
to implement fairness. Second, Tfair serves as a stepping stone for developing a
proof system for fair nondeterminism. We start with the following conclusion
of (12.1):

|=fair {p} S {q} iff |=tot {p} Tfair (S) {q}, (12.2)

which states that a program S is correct in the sense of fair total correctness
(explained in Section 12.7) if and only if its transformed version Tfair (S)
is correct in the sense of usual total correctness. Corollary (12.2) suggests
using the transformation Tfair itself as a proof rule in a system for fair non-
determinism. This is a valid approach, but we can do slightly better here:
by informally “absorbing” the parts added to S by Tfair into the pre- and
postconditions p and q we obtain a system for proving

|=fair {p} S {q}

directly without reference to Tfair . So, Tfair is used only to motivate and
justify the new proof rules.

The subsequent sections explain this transformational semantics approach
in detail.

12.3 Well-Founded Structures

We begin by introducing well-founded structures. The reason is that to prove
termination of programs involving unbounded nondeterminism (see Exam-
ple 12.2), we need bound functions that take values in more general structures
than integers.
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Definition 12.1. Let (P,<) be an irreflexive partial order; that is, let P be a
set and < an irreflexive transitive relation on P . We say that < is well-founded
on a subset W ⊆ P if there is no infinite descending chain

. . . < w2 < w1 < w0

of elements wi ∈ W . The pair (W,<) is then called a well-founded structure.
If w < w′ for some w,w′ ∈ W we say that w is less than w′ or w′ is greater
than w. ⊓⊔

Of course, the natural numbers form a well-founded structure (N, <) under
the usual relation <. But also the extension (N ∪ {ω}, <), with ω denoting
an “unbounded value” satisfying

n < ω

for all n ∈ N, is well-founded. We mention two important construction prin-
ciples for building new well-founded structures from existing ones.

Let (W1, <1) and (W1, <2) be two well-founded structures. Then the
structure (W1 × W2, <com) with <com denoting the componentwise order
on W1 × W2 defined by

(m1,m2) <com (n1, n2) iff m1 <1 n1 or m2 <2 n2

is well-founded, and the structure (W1 ×W2, <lex ) with <lex denoting the
lexicographic order on W1 × W2 defined by

(m1,m2) <lex (n1, n2) iff (m1 <1 n1) or
(m1 = n1 and m2 <2 n2)

is also well-founded.
Similarly, given well-founded structures (W1, <1), . . ., (Wn, <n), we can

define the componentwise and the lexicographic orders on the products W1×
. . . × Wn (n > 1). These also are well-founded.

12.4 Random Assignment

Note that we cannot expect the transformed program Tfair (S) to be an-
other nondeterministic program in the syntax of Section 10.1, because the
semantics Mtot yields bounded nondeterminism (Bounded Nondeterminism
Lemma 10.1) for these programs whereas Mfair yields unbounded nondeter-
minism (Example 12.2).

But we can find a transformation Tfair where the transformed program
Tfair (S) uses an additional language construct: the random assignment
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x :=?.

It assigns an arbitrary nonnegative integer to the integer variable x. The
random assignment is an explicit form of unbounded nondeterminism. In the
transformation Tfair it will localize the unbounded nondeterminism implicitly
induced by the assumption of fairness. Thus; random assignments will enable
us to reason about programs under fairness assumptions. In this section we
present a semantics and proof theory of random assignments as an extension
of ordinary nondeterministic programs.

Semantics

The random assignment x :=? terminates for any initial state σ, but there
are infinitely many possibilities for the final state —one for each non-negative
value that might be assigned to x. This idea is captured in the following
transition axiom where σ is a proper state:

(xxvi) < x :=?, σ > → < E, σ[x := d] > for every natural number d ≥ 0.

The semantics of nondeterministic programs with random assignments is de-
fined just as in Section 10.2, but with the transition relation → referring to
this additional transition axiom. In particular, we have

N [[x :=?]](σ) = {σ[x := d] | d ≥ 0}

for a proper state σ and N = M or N = Mtot.

Verification

The proof theory of random assignments in isolation is simple. We just need
the following axiom.

AXIOM 37: RANDOM ASSIGNMENT

{∀x ≥ 0 : p} x :=? {p}

Thus, to establish an assertion p after the random assignment x :=?, p must
hold before x :=? for all possible values of x generated by this assignment;
that is, for all integers x ≥ 0. Thus, as with the assignment axiom 2 for ordi-
nary assignments, this axiom formalizes backward reasoning about random
assignments. By the above semantics, the random assignment axiom is sound
for partial and total correctness.
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But does it suffice when added to the previous proof systems for non-
deterministic programs? For partial correctness the answer is “yes.” Thus
for proofs of partial correctness of nondeterministic programs with random
assignments we consider the following proof system PNR.

PROOF SYSTEM PNR :
This system consists of the proof system
PN augmented with axiom 37.

Proving termination, however, gets more complicated: the repetitive com-
mand II rule 33 of Section 10.4, using an integer-valued bound function t,
is no longer sufficient. The reason is that in the presence of random assign-
ments some repetitive commands always terminate but the actual number of
repetitions does not depend on the initial state and is unbounded.

To illustrate this point, consider the program

Sω ≡ do b ∧ x > 0 → x := x − 1
⊓⊔ b ∧ x < 0 → x := x + 1
⊓⊔ ¬b → x :=?; b := true
od.

Activated in a state where b is true, this program terminates after |x| repe-
titions. Thus t = |x| is an appropriate bound function for showing

{b} Sω {true}

with the rule of repetitive commands II.
Sω also terminates when activated in a state σ where b is false, but we

cannot predict the number of repetitions from σ. This number is known only
after the random assignment x :=? has been executed; then it is |x| again.
Thus any bound function t on the number of repetitions has to satisfy

t ≥ |x|

for all x ≥ 0. Clearly, this is impossible for any integer valued t. Consequently,
the rule of repetitive commands II is not sufficient to show

{¬b} Sω {true}.

The following, more general proof rule for repetitive commands assumes a
well-founded structure (W,<) to be a part of the underlying semantic do-
main D (cf. Section 2.3). Variables ranging over W can appear only in asser-
tions and not in programs. As before, program variables range only over the
standard parts of the domain D like the integers or the Booleans.
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RULE 38: REPETITIVE COMMAND III

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
{p ∧ Bi ∧ t = α} Si {t < α}, i ∈ {1, . . . , n},
p → t ∈ W

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n
i=1 ¬Bi}

where

(i) t is an expression which takes values in an irreflexive partial order (P,<)
that is well-founded on the subset W ⊆ P ,

(ii) α is a simple variable ranging over P that does not occur in p, t, Bi or
Si for i ∈ {1, . . . , n}.

The expression t is the bound function of the repetitive command. Since
it takes values in W that are decreased by every execution of a command
Si, the well-foundedness of < on W guarantees the termination of the whole
repetitive command do ⊓⊔n

i=1 Bi → Si od. Note that with P = Z, the set of
integers, and W = N, the set of natural numbers, the rule reduces to the
previous repetitive command II rule 33. Often P itself is well-founded. Then
we take W = P .

For proofs of total correctness of nondeterministic programs with random
assignments we use the following proof system TNR.

PROOF SYSTEM TNR :
This system is obtained from the proof system TN
by adding axiom 37 and replacing rule 33 by rule 38.

Example 12.3. As a simple application of the system TNR let us prove the
termination of the program Sω considered above; that is,

⊢TNR {true} Sω {true}.

As a loop invariant we can simply take the assertion true. To find an appro-
priate bound function, we recall our informal analysis of Sω . Activated in a
state where b is true, Sω terminates after |x| repetitions. But activated in
a state where b is false, we cannot predict the number of repetitions of Sω .
Only after executing the random assignment x :=? in the first round of Sω
do we know the remaining number of repetitions.

This suggests using the well-founded structure

(N ∪ {ω}, <)

discussed earlier. Recall that ω represents an unknown number which will
become precise as soon as ω is decreased to some α < ω that must be in N.
With this intuition the number of repetitions can be expressed by the bound
function
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t ≡ if b then |x| else ω fi.

Of course, we have to check whether the premises of the repetitive command
III rule 38 are really satisfied. We take here

P = W = N ∪ {ω}

so that rule 38 is applied with both t and α ranging over N ∪ {ω}. The
premises dealing with the loop invariant are trivially satisfied. Of the premises
dealing with the decrease of the bound function,

⊢TNR {b ∧ x > 0 ∧ t = α} x := x − 1 {t < α} (12.3)

and
⊢TNR {b ∧ x < 0 ∧ t = α} x := x + 1 {t < α} (12.4)

are easy to establish because t ranges over N when b evaluates to true.
Slightly more involved is the derivation of

⊢TNR {¬b ∧ t = α} x :=?; b := true {t < α}. (12.5)

By the axiom of random assignment we have

{∀x ≥ 0 : |x| < α} x :=? {|x| < α}.

Since x is an integer variable, the quantifier ∀x ≥ 0 ranges over all natural
numbers. Since on the other hand α ranges over N ∪ {ω} and by definition
n < ω for all n ∈ N, the rule of consequence yields

{ω = α} x :=? {|x| < α}.

Using the (ordinary) axiom of assignment and the rule of sequential compo-
sition, we have

{ω = α} x :=?; b := true {b ∧ |x| < α}.

Thus, by the rule of consequence,

{¬b ∧ ω = α} x :=?; b := true {b ∧ |x| < α}.

Finally, using the definition of t in another application of the rule of conse-
quence yields

{¬b ∧ t = α} x :=?; b := true {t < α}.

Since we applied only proof rules of the system TNR, we have indeed estab-
lished (12.5).

Thus an application of the repetitive command III rule 38 yields the desired
termination result:

⊢TNR {true} Sω {true}.
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As before, we can represent proofs by proof outlines. The above proof of total
correctness is represented as follows:

{inv : true}
{bd : if b then |x| else ω fi}
do b ∧ x > 0 → {b ∧ x > 0}

x := x − 1
⊓⊔ b ∧ x < 0 → {b ∧ x < 0}

x := x + 1
⊓⊔ ¬b → {¬b}

x :=?; b := true
od
{true}.

This concludes the example. ⊓⊔

The following theorem can be proved by a simple modification of the ar-
gument used to prove the Soundness of PW and TW Theorem 3.1.

Theorem 12.1. (Soundness of PNR and TNR)

(i) The proof system PNR is sound for partial correctness of nondetermin-
istic programs with random assignments.

(ii) The proof system TNR is sound for total correctness of nondeterministic
programs with random assignments.

Proof. See Exercise 12.3. ⊓⊔

12.5 Schedulers

Using random assignments we wish to develop a transformation Tfair which
reduces fair nondeterminism to ordinary nondeterminism. We divide this task
into two subtasks:

• the development of a scheduler that enforces fairness in abstract runs,
• the embedding of the schedulers into nondeterministic programs.

In this section we deal with schedulers so that later, when considering parallel
programs, we can reuse all results obtained here. In addition, schedulers are
interesting in their own right because they explain how to implement fairness.

In general, a scheduler is an automaton that enforces a certain discipline
on the computations of a nondeterministic or parallel program. To this end,
the scheduler keeps in its local state sufficient information about the run of
a computation, and engages in the following interaction with the program:
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At certain moments during a computation, the program pre-sents the set E of
currently enabled components to the scheduler (provided E 6= ∅). By consulting
its local state, the scheduler returns to the program a nonempty subset I of
E. The idea is that whatever component i ∈ I is activated next, the resulting
computation will still satisfy the intended discipline. So the program selects
one component i ∈ I for activation, and the scheduler updates its local state
accordingly.

We call a pair (E, i), where E ∪ {i} ⊆ {1, . . . , n}, a selection (of n com-
ponents). From a more abstract point of view, we may ignore the actual
interaction between the program and scheduler and just record the result of
this interaction, the selection (E, i) checked by the scheduler. Summarizing,
we arrive at the following definition.

Definition 12.2. A scheduler (for n components) is given by

• a set of local scheduler states σ, which are disjoint from the program states,
• a subset of initial scheduler states, and
• a ternary scheduling relation

sch ⊆
{scheduler states} × {selections of n components} × {scheduler states}
which is total in the following sense:

∀σ∀E 6= ∅ ∃i ∈ E ∃σ′ : (σ, (E, i), σ′) ∈ sch.

Thus for every scheduler state σ and every nonempty set E of enabled
components there exists a component i ∈ E such that the selection (E, i)
of n components together with the updated local state σ′ satisfies the
scheduling relation. ⊓⊔

Thus, given the local state σ of the scheduler,

I = {i | ∃σ′ : (σ, (E, i), σ′) ∈ sch}

is the subset returned by the scheduler to the program. Totality of the
scheduling relation ensures that this set I is nonempty. Consequently a sched-
uler can never block the computation of a program but only influence its
direction. Consider now a finite or infinite run

(E0, i0)(E1, i1). . .(Ej , ij). . .

and a scheduler SCH. We wish to ensure that sufficiently many, but not
necessarily all, selections (Ej , ij) are checked by SCH. To this end, we take
a so-called check set

C ⊆ N

representing the positions of selections to be checked.
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Definition 12.3. (i) A run

(E0, i0)(E1, i1). . .(Ej , ij). . .

can be checked by SCH at every position in C if there exists a finite or
infinite sequence

σ0σ1. . .σj , . . .

of scheduler states, with σ0 being an initial scheduler state, such that
for all j ≥ 0

(σj , (Ej , ij), σj+1) ∈ sch if j ∈ C

and

σj = σj+1 otherwise.

We say that a run can be checked by SCH if it can be checked by SCH
at every position; that is, for the check set C = N.

(ii) A scheduler SCH for n components is called fair (for a certain subset
of runs) if every run of n components which (is in this subset and) can
be checked by SCH is fair.

(iii) A fair scheduler SCH for n components is called universal if every fair
run of n components can be checked by SCH. ⊓⊔

Thus for j ∈ C the scheduling relation sch checks the selection (Ej , ij)
made in the run using and updating the current scheduler state; for j 6∈ C
there is no interaction with the scheduler and hence the current scheduler
state remains unchanged (for technical convenience, however, this is treated
as an identical step with σj = σj+1).

For example, with C = {2n + 1 | n ∈ N} every second selection in a run is
checked. This can be pictured as follows:

Run: (E0, i0) (E1,i1) (E2, i2) (E3,i3). . .
↓ ↑ ↓ ↑

Scheduler: σ0 = σ1 SCH σ2 = σ3 SCH σ4. . . .

Note that the definition of checking applies also in the case of finite runs H
and infinite check sets C.

The Scheduler FAIR

Using the programming syntax of this section, we now present a specific
scheduler FAIR. For n components it is defined as follows:

• The scheduler state is given by n integer variables z1, . . ., zn,
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• this state is initialized nondeterministically by the random assignments

INIT ≡ z1 :=?; . . .; zn :=?,

• the scheduling relation sch(σ, (E, i), σ′) holds iff σ,E, i, σ′ are as follows:

(i) σ is given by the current values of z1, . . ., zn,
(ii) E and i satisfy the condition

SCHi ≡ zi = min {zk | k ∈ E},

(iii) σ′ is obtained from σ by executing

UPDATEi ≡ zi :=?;
for all j ∈ {1, . . . , n} − {i} do

if j ∈ E then zj := zj − 1 fi
od,

where we use the abbreviation

for all j ∈ {1, . . . , n} − {i} do Sj od
≡ S1; . . .; Si−1; Si+1; . . .; Sn.

The scheduling variables z1, . . ., zn represent priorities assigned to the n
components. A component i has higher priority than a component j if zi < zj .
Initially, the components are assigned arbitrary priorities. If during a run
FAIR is presented with a set E of enabled components, it selects a component
i ∈ E that has maximal priority; that is, with

zi = min {zk | k ∈ E}.

For any nonempty set E and any values of z1, . . ., zn there exists some (but
not necessarily unique) i ∈ E with this property. Thus the scheduling relation
sch of FAIR is total as required by Definition 12.2.

The update of the scheduling variables guarantees that the priorities of
all enabled but not selected components j get increased. The priority of the
selected component i, however, gets reset arbitrarily. The idea is that by
gradually increasing the priority of enabled components j their activation
cannot be refused forever. The following theorem makes this idea precise.

Theorem 12.2. (Fair Scheduling) For n components FAIR is a universal
fair scheduler. In other words, a run of n components is fair iff it can be
checked by FAIR.

Proof. “if”: Consider a run

(E0, i0). . .(Ej , ij). . . (12.6)

that is checked at every position. Let



12.5 Schedulers 423

σ0. . .σj . . .

be a sequence of scheduler states of FAIR satisfying sch(σj , (Ej , ij), σj+1)
for every j ∈ N. We claim that (12.6) is fair.

Suppose the contrary. Then there exists some component i ∈ {1, . . . , n}
which is infinitely often enabled, but from some moment j0 ≥ 0 on never
activated. Formally,

(
∞

∃j ∈ N : i ∈ Ej) ∧ (∀j ≥ j0 : i 6= ij).

Since (12.6) is checked at every position, the variable zi of FAIR, which gets
decremented whenever the component i is enabled but not activated, becomes
arbitrarily small, in particular, smaller than −n in some state σj with j ≥ j0.
But this is impossible because the assertion

INV ≡
n∧

k=1

card {i ∈ {1, . . . , n} | zi ≤ −k} ≤ n − k

holds in every scheduler state σj of FAIR. INV states, in particular, for k = 1
that at most n − 1 of the scheduling variables z1, . . ., zn of FAIR can have
values ≤ −1, and for k = n that none of the scheduling variables can have
values ≤ −n.

We prove this invariant by induction on j ≥ 0, the index of the state σj .
In σ0 we have z1, . . ., zn ≥ 0 so that INV is trivially satisfied. Assume now
that INV holds in σj . We show that INV also holds in σj+1. Suppose INV
is false in σj+1. Then there is some k ∈ {1, . . . , n} such that there are at least
n−k+1 indices i for which zi ≤ −k holds in σj+1. Let I be the set of all these
indices. Note that I is nonempty and card I ≥ n − k + 1. By the definition
of FAIR, zi ≤ −k + 1 holds for all i ∈ I in σj . Thus card I ≤ n − k + 1 by
the induction hypothesis. So actually card I = n − k + 1 and

I = {i ∈ {1, . . . , n} | σj |= zi ≤ −k + 1}.

Since FAIR checks the run (12.6) at position j, we have sch(σj , (Ej , ij), σj+1).
By the definition of FAIR, the activated component ij is in I. This is a
contradiction because then zij

≥ 0 holds in σj+1 due to the UPDATEij
part

of FAIR. Thus INV remains true in σj+1.

“only if”: Conversely, let the run

(E0, i0). . .(Ej , ij). . . (12.7)

be fair. We show that (12.7) can be checked at every position by constructing
a sequence

σ0. . .σj . . .
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of scheduler states of FAIR satisfying sch(σj , (Ej , ij), σj+1) for every j ∈ N.
The construction proceeds by assigning appropriate values to the sche-duling
variables z1, . . ., zn of FAIR. For i ∈ {1, . . . , n} and j ∈ N we put

σj(zi) = card {ℓ | j ≤ ℓ < mi,j ∧ i ∈ Eℓ},

where

mi,j = min {m | j ≤ m ∧ (im = i ∨ ∀n ≥ m : i 6∈ En)}.

Thus σj(zi) counts the number of times (ℓ) the ith component will be enabled
(i ∈ Eℓ) before its next activation (im = i) or before its final “retirement”
(∀n ≥ m : i 6∈ En). Note that the minimum mi,j ∈ N exists because the run
(12.7) is fair. In this construction the variables z1, . . ., zn have values ≥ 0 in
every state σj and exactly one variable zi with i ∈ Ej , has the value 0. This
i is the index of the component activated next. It is easy to see that this
construction of values σj(zi) is possible with the assignments in FAIR. ⊓⊔

The universality of FAIR implies that every other fair scheduler can be
obtained by implementing the nondeterministic choices in FAIR. Following
Dijkstra [1976] and Park [1979], implementing nondeterminism means nar-
rowing the set of nondeterministic choices. For example, a random assignment
z :=? can be implemented by any ordinary assignment z := t where t evalu-
ates to a nonnegative value.

The Scheduler RORO

The simplest scheduler is the round robin scheduler RORO. For n components
it selects the enabled components clockwise in the cyclic ordering

1 → 2 → . . . → n → 1,

thereby skipping over momentarily disabled components.
Is RORO a fair scheduler? The answer is “no.” To see this, consider a run

of three components 1, 2, 3 where 1 and 3 are always enabled but 2 is enabled
only at every second position in the run. Then RORO schedules the enabled
components as follows:

({1, 2, 3}, 1)({1, 3}, 3)({1, 2, 3}, 1)({1, 3}, 3). . . .

Thus, component 2 is never selected by RORO, even though it is enabled
infinitely often. Hence, the run is unfair.

However, it is easy to see that RORO is a fair scheduler for monotonic
runs.
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Definition 12.4. A possibly infinite run

(E0, i0)(E1, i1). . .(Ej , ij). . .

is called monotonic if

E0 ⊇ E1 ⊇ . . . ⊇ Ej ⊇ . . .. ⊓⊔

Obviously, the run considered above is not monotonic. Note that one-level
nondeterministic programs

S ≡ S0; do B → S1⊓⊔. . .⊓⊔B → Sn od

with identical guards have only monotonic runs. Thus for these programs
RORO can be used as a fair scheduler.

How can we obtain RORO from FAIR? Consider the following implemen-
tation of the random assignments in FAIR for n components:

INIT ≡ z1 := 1; . . .; zn := n,

SCHi ≡ zi = min {zk | k ∈ E},

UPDATEi ≡ zi := n;

for all j ∈ {1, . . . , n} − {i} do

if j ∈ E then zj := zj − 1 fi

od.

By the Fair Scheduling Theorem 12.2, this is a fair scheduler for arbitrary
runs. When applied to a monotonic run, it always schedules the next enabled
component in the cyclic ordering 1 → 2 → . . . → n → 1. Thus for monotonic
runs the above is an implementation of the round robin scheduler RORO,
systematically obtained from the general scheduler FAIR.

Clearly, this implementation of RORO is too expensive in terms of stor-
age requirements. Since we only need to remember which component was
selected as the last one, the variables z1, . . ., zn of RORO can be condensed
into a single variable z ranging over {1, . . . , n} and pointing to the index
of the last selected component. This idea leads to the following alternative
implementation of RORO:

INIT ≡ z := 1,

SCHi ≡ i = succm(z) where m = min {k | succk(z) ∈ E},

UPDATEi ≡ succm+1(z).

Here succ(·) is the successor function in the cyclic ordering 1 → 2 → . . . → n
→ 1 and succk(·) is the kth iteration of this successor function.
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This implementation uses only n scheduler states. It follows from a result
of Fischer and Paterson [1983] that this number is optimal for fair schedulers
for monotonic runs of n components.

The Scheduler QUEUE

As we have seen, for nonmonotonic runs fairness cannot be enforced by the
inexpensive round robin scheduler. Fischer and Paterson [1983] have shown
that any fair scheduler that is applicable for arbitrary runs of n components
needs at least n! = 1 · 2 · . . . · n scheduler states.

One way of organizing such a scheduler is by keeping the components
in a queue. In each check the scheduler activates that enabled component
which is earliest in the queue. This component is then placed at the end
of the queue. Fairness is guaranteed since every enabled but not activated
component advances one position in the queue. Let us call this scheduler
QUEUE.

Consider once more a run of three components 1, 2, 3 where 1 and 3 are
always enabled but 2 is enabled only at every second position in the run.
Then QUEUE schedules the enabled components as follows:

Run: ({ 1, 2, 3}, 1)({ 1, 3}, 3)({ 1, 2, 3}, 2)({ 1, 3}, 1)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

QUEUE: 1.2.3 2.3.1 2.1.3 1.3.2

Run: ({ 1, 2, 3}, 3)({ 1, 3}, 1)({ 1, 2, 3}, 2)({ 1, 3}, 3)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

QUEUE: 3.2.1 2.1.3 2.3.1 3.1.2

Run: ({ 1, 2, 3}, 1) . . .
↓ ↑

QUEUE: 1.2.3 . . . .

Below each selection of the run we exhibit the value of the queue on which
this selection is based. We see that the ninth selection ({1, 2, 3},1) in the run
is based on the same queue value 1.2.3 as the first selection ({1, 2, 3},1). Thus
every component gets activated infinitely often.

The effect of QUEUE can be modeled by implementing the random as-
signments of the general scheduler FAIR as follows:
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INIT ≡ z1 := 0; z2 := n; . . .; zn := (n − 1) · n,

SCHi ≡ zi := min {zk | k ∈ E},

UPDATEi ≡ zi := n + max {z1, . . ., zn};

forall j ∈ {1, . . . , n} − {i} do

if j ∈ E then zj := zj − 1 fi

od.

The idea is that in the QUEUE component i comes before component j iff
zi < zj holds in the above implementation. Since FAIR leaves the variables
zj of disabled components j unchanged and decrements those of enabled
but not activated ones, some care had to be taken in the implementation
of the random assignment of FAIR in order to prevent any change of the
order of components within the queue. More precisely, the order “component
i before component j,” represented by zi < zj should be preserved as long
as neither i nor j is activated. That is why initially and in every update we
keep a difference of n between the new value of zi and all previous values.
This difference is sufficient because a component that is enabled n times is
selected at least once.

12.6 Transformation

We can now present the transformation Tfair reducing fair nondeterminism
to the usual nondeterminism in the sense of transformational semantics of
Section 12.2:

Mfair [[S]] = Mtot [[Tfair (S)]].

Given a one-level nondeterministic program

S ≡ S0; do ⊓⊔n
i=1 Bi → Si od,

the transformed program Tfair (S) is obtained by embedding the scheduler
FAIR into S:

Tfair (S) ≡ S0; INIT ;
do ⊓⊔n

i=1 Bi ∧ SCHi → UPDATEi; Si od,

where we interpret E as the set of indices k ∈ {1, . . . , n} for which Bk holds:

E = {k | 1 ≤ k ≤ n ∧ Bk}.

We see that the interaction between the program S and the scheduler FAIR
takes place in the guards of the do loop in Tfair (S). The guard of the ith
component can be passed only if it is enabled and selected by FAIR; that is,
when both Bi and SCHi evaluate to true.
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Expanding the abbreviations INIT , SCHi and UPDATEi from FAIR
yields:

Tfair (S) ≡ S0; z1 :=?; . . .; zn :=?;
do ⊓⊔n

i=1 Bi ∧ zi = min {zk | 1 ≤ k ≤ n ∧ Bk}→
zi :=?;
for all j ∈ {1, . . . , n} − {i} do

if Bj then zj := zj − 1 fi
od;
Si

od.

In case of identical guards B1 ≡ . . . ≡ Bn the transformation simplifies to

Tfair (S) ≡ S0; z1 :=?; . . .; zn :=?;
do ⊓⊔n

i=1 Bi ∧ zi = min {z1, . . ., zn}→
zi :=?;
for all j ∈ {1, . . . , n} − {i} do

zj := zj − 1
od;
Si

od.

In both cases we assume that the variables z1, . . ., zn do not occur in S.

Example 12.4. The printer-user program

PU1 ≡ signal := false;
do ¬signal → “print next line”
⊓⊔ ¬signal → signal := true
od

discussed in Section 12.1 is transformed into

Tfair (PU1) ≡ signal := false; z1 :=?; z2 :=?;
do ¬signal ∧ z1 ≤ z2 → z1 :=?; z2 := z2 − 1;

“print next line”
⊓⊔ ¬signal ∧ z2 ≤ z1 → z2 :=?; z1 := z1 − 1;

signal := true
od.

Note that in Tfair (PU1) it is impossible to activate exclusively the first
component of the do loop because in every round through the loop the vari-
able z2 gets decremented. Thus eventually the conjunct

z1 ≤ z2

of the first guard will be falsified, but then the second guard with the conjunct
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z2 ≤ z1

will be enabled. Thus the second component of the do loop is eventually
activated. This leads to termination of Tfair (PU1).

Thus for PU1 the aim of our transformation Tfair is achieved: with the help
of the scheduling variables z1 and z2, the transformed program Tfair (PU1)
generates exactly the fair computations of the original program PU1. ⊓⊔

But what is the semantic relationship between S and Tfair (S) in general?
Due to the presence of the scheduling variables z1, . . ., zn in Tfair (S), the best
we can prove is that the semantics Mfair [[S]] and Mtot [[Tfair (S)]] agree modulo
z1, . . ., zn; that is, the final states agree on all variables except z1, . . ., zn. To
express this we use the mod notation introduced in Section 2.3.

Theorem 12.3. (Embedding) For every one-level nondeterministic pro-
gram S and every proper state σ

Mfair [[S]](σ) = Mtot [[Tfair (S)]](σ) mod Z,

where Z is the set of scheduling variables zi used in Tfair .

Proof. Let us call two computations Z-equivalent if they start in the same
state and either both diverge or both terminate in states that agree modulo
Z.

We prove the following two claims:

(i) every computation of Tfair (S) is Z-equivalent to a fair computation of
S,

(ii) every fair computation of S is Z-equivalent to a computation of Tfair (S).

To this end, we relate the computations of Tfair (S) and S more intimately.
A computation ξ∗ of Tfair (S) is called an extension of a computation ξ of S to
the variables of Z if ξ∗ results from ξ by adding transitions dealing exclusively
with the variables in Z and by assigning in each state of ξ∗ appropriate values
to the variables in Z. Conversely, a computation ξ of S is called a restriction
of a computation ξ∗ of Tfair (S) to the variables in Z if all transitions referring
to the variables in Z are deleted and the values of the variables in Z are reset
in all states of ξ to the values in the first state of ξ∗.

Observe the following equivalences:

ξ is a fair computation of S
iff {definition of fairness}

ξ is a computation of S with a fair run
iff {Theorem 12.2}

ξ is a computation of S with a run that
can be checked by the scheduler FAIR.

By these equivalences and the construction of Tfair , we conclude now:
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(i) If ξ is a fair computation of S, there exists an extension ξ∗ of ξ to the
variables in Z which is a computation of Tfair (S).

(ii) If ξ∗ is a computation of Tfair (S), the restriction ξ of ξ∗ to the variables
in Z is a prefix of a fair computation of S. We say “prefix” because it
is conceivable that ξ∗ exits the loop in Tfair (S) due to the additional
condition SCHi in the guards, whereas S could continue looping and
thus yield a longer computation than ξ. Fortunately, these premature
loop exits cannot happen because the scheduling relation of FAIR is
total (cf. Definition 12.2). Thus if some guard Bi of S evaluates to true,
one of the extended guards Bi ∧ SCHi of Tfair (S) will also evaluate to
true. Hence the above restriction ξ of ξ∗ is really a fair computation of
S.

Clearly, if ξ∗ is an extension of ξ or ξ is a restriction of ξ∗, then ξ and ξ∗ are
Z-equivalent. Thus, (i′) and (ii′) imply (i) and (ii), establishing the claim of
the theorem. ⊓⊔

12.7 Verification

Total Correctness

The semantics Mfair induces the following notion of program correctness: a
correctness formula {p} S {q} is true in the sense of fair total correctness,
abbreviated

|=fair {p} S {q},

if
Mfair [[S]]([[p]]) ⊆ [[q]].

The transformation Tfair enables us to develop a proof system for fair total
correctness. The starting point is the following corollary of the Embedding
Theorem 12.3.

Corollary 12.1. (Fairness) Let p and q be assertions that do not contain
z1, . . ., zn as free variables and let S be a one-level nondeterministic program.
Then

|=fair {p} S {q} iff |=tot {p} Tfair (S) {q}.
⊓⊔

Thus, in order to prove fair total correctness of S, it suffices to prove total
correctness of Tfair (S). This suggests the proof rule

{p} Tfair (S) {q}

{p} S {q}
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for fair total correctness. Its premise has to be established in the proof sys-
tem TNR for total correctness of nondeterministic programs with random
assignments introduced in Section 12.4.

But, in fact, we can do slightly better by “absorbing” the parts INIT ,
SCHi and UPDATEi added to S by Tfair into the assertions p and q. This
process of absorption yields a new proof rule for fair repetition which in its
premise deals with the original one-level nondeterministic program S and
which uses the scheduling variables z1, . . ., zn of Tfair (S) only in the asser-
tions. Thus Tfair allows us to derive and justify this new rule.

RULE 39: FAIR REPETITION

(1) {p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
(2) {p ∧ Bi ∧ z̄ ≥ 0

∧ ∃zi ≥ 0 : t[zj := if Bj then zj + 1 else zj fi]j 6=i = α}
Si

{t < α}, i ∈ {1, . . . , n},
(3) p ∧ z̄ ≥ 0 → t ∈ W

(4) {p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n

i=1 ¬Bi}

where

(i) t is an expression which takes values in an irreflexive partial order (P,<)
that is well-founded on the subset W ⊆ P ,

(ii) z1, . . ., zn are integer variables that do not occur in p,Bi or Si, for
i ∈ {1, . . . , n},

(iii) t[zj := if Bj then zj + 1 else zj fi]j 6=i denotes the expression that re-
sults from t by substituting for every occurrence of zj in t the condi-
tional expression if Bj then zj + 1 else zj fi; here j ranges over the set
{1, . . ., n} −{i},

(iv) z̄ ≥ 0 abbreviates z1 ≥ 0 ∧ . . . ∧ zn ≥ 0,
(v) α is a simple variable ranging over P and not occurring in p, t, Bi or Si,

for i ∈ {1, . . . , n}.

For identical guards B1 ≡ . . . ≡ Bn ≡ B this rule can be simplified. In
particular, the substitution

t[zj := if Bj then zj + 1 else zj fi]j 6=i

in premise (2) simplifies to

t[zj := zj + 1]j 6=i

because for each j the condition Bj ≡ Bi evaluates to true. This yields the
following specialization of the fair repetition rule 39.
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RULE 39′: FAIR REPETITION (IDENTICAL GUARDS)

(1′) {p ∧ B} Si {p}, i ∈ {1, . . . , n},
(2′) {p ∧ B ∧ z̄ ≥ 0 ∧ ∃zi ≥ 0 : t[zj := zj + 1]j 6=i = α}

Si

{t < α}, i ∈ {1, . . . , n},
(3′) p ∧ z̄ ≥ 0 → t ∈ W

(4′) {p} do ⊓⊔n
i=1 B → Si od {p ∧ ¬B}

where conditions analogous to (i)–(v) hold.

Except for the additional variables z1, . . ., zn the fair repetition rules 39
and 39′ follow the pattern of the usual rule for total correctness of repetitive
commands in the system TNR (rule 38). Premise (1) of rule 39 establishes
partial correctness of the do loop by showing that p is a loop invariant.
Premise (2) of rule 39 establishes that t is a bound function of the loop, but
with the variables z1, . . ., zn as “helpful ingredients.”

Let us explain this point for the simplified fair repetition rule 39′. The
variables z1, . . ., zn may occur only in the expression t. In the precondition of
(2′) the value zj + 1 instead of zj appears in t for all indices j 6= i. Among
other things this precondition states that for some value of zi

t[zj := zj + 1]j 6=i = α.

In the postcondition of (2′) we have to show that

t < α.

Obviously, decrementing zj + 1 to zj is “helpful” for establishing that t has
dropped below α. On the other hand, the value of zi is not helpful for calcu-
lating the value of t because in the precondition of (2′) it is under the scope
of an existential quantifier.

As we see in the subsequent soundness proof of the fair repetition rule 39,
the precondition of premise (2) results from calculating the postcondition of
the UPDATEi part in the transformation Tfair .

We prove fair total correctness of one-level nondeterministic programs
using the following proof system FN.

PROOF SYSTEM FN :
This system is obtained from the proof system TN
by replacing rule 33 by rule 39.

Notice that the random assignment axiom 37 is not included in FN; this
axiom is needed only to prove the soundness of the fair repetition rule 39.
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Let us demonstrate the power of the system FN, in particular that of
rule 39 (and 39′), by a few examples. In the more complicated examples we
use proof outlines for fair total correctness. They are defined in the usual way,
with reference to the premises of rule 39, when dealing with loop invariants
p and bound functions t.

Example 12.5. Consider the printer-user program

PU1 ≡ signal := false;
do ¬signal → “print next line”
⊓⊔ ¬signal → signal := true
od

of Section 12.1. We wish to prove that PU1 terminates under the assumption
of fairness, that is,

|=fair {true} PU1 {true}.

Since printing a line does not change the variable signal, we identify

“print next line” ≡ skip.

Using the new proof system FN, we first prove

{true}
do ¬signal → skip
⊓⊔ ¬signal → signal := true (12.8)
od
{signal}

with its fair repetition rule 39′ dealing with identical guards. Finding an
appropriate loop invariant is trivial: we just take

p ≡ true.

More interesting is the choice of the bound function t. We take the conditional
expression

t ≡ if ¬signal then z2 + 1 else 0 fi.

Here we use the scheduling variable z2 associated with the second component
of the do loop. Clearly, t ranges over the set Z of integers which, under the
usual ordering <, is well-founded on the subset

W = N

of natural numbers.
Intuitively, t counts the maximal number of rounds through the loop. If

the signal is true, the loop terminates, hence no round will be performed. If
the signal is false, z2 + 1 rounds will be performed: the scheduling variable
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z2 counts how many rounds the second component of the loop has neglected
and +1 counts the final round through the second component.

Formally, we check the premises (1′)-(3′) of the fair repetition rule 39′.
Premises (1′) and (3′) are obviously satisfied. The interesting premise is (2′)
which deals with the decrease of the bound function.

(a) For the first component of the do loop we have to prove

{ true ∧ ¬signal ∧ z1 ≥ 0 ∧ z2 ≥ 0
∧ ∃z1 ≥ 0 : if ¬signal then z2 + 2 else 0 fi = α}

skip (12.9)
{if ¬signal then z2 + 1 else 0 fi < α}

in the system FN. By the skip axiom 1 and the consequence rule 6, it suffices
to show that the precondition implies the postcondition. This amounts to
checking the implication

z2 + 2 = α → z2 + 1 < α

which is clearly true.
Thus, when the first component is executed, the scheduling variable z2 is

responsible for the decrease of the bound function t.

(b) For the second component we have to prove

{ true ∧ ¬signal ∧ z1 ≥ 0 ∧ z2 ≥ 0
∧ ∃z2 ≥ 0 : if ¬signal then z2 + 1 else 0 fi = α}

signal := true (12.10)
{if ¬signal then z2 + 1 else 0 fi < α}

in FN. By the assignment axiom 2 and the rule of consequence, it suffices to
show

∃z2 ≥ 0 : z2 + 1 = α → 0 < α.

Since ∃z2 ≥ 0 : z2 + 1 = α is equivalent to α ≥ 1, this implication is true.
Thus, when the second component is executed, the program variable signal

is responsible for the decrease of t.

By (12.9) and (12.10), premise (2′) is proved in FN. Now an application
of the fair repetition rule 39′ yields (12.8). Finally, (12.8) implies

|=fair {true} PU1 {true},

the desired termination result about PU1. ⊓⊔
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Example 12.6. More complicated is the analysis of the modified printer-user
program

PU2 ≡ signal := false; full-page := false; ℓ := 0;
do ¬signal → “print next line”;

ℓ := (ℓ + 1) mod 30;
full-page := ℓ = 0






printer

⊓⊔ ¬signal ∧ full-page → signal := true
}

user

od

of Section 12.1. We wish to prove that under the assumption of fairness PU2
terminates in a state where the printer has received the signal of the user and
completed its current page, that is,

|=fair {true} PU2 {signal ∧ full-page}.

A proof outline for fair total correctness in the system FN has the following
structure:

{true}
signal := false;
full-page := false;
ℓ := 0;
{¬signal ∧ ¬full-page ∧ ℓ = 0}
{inv : p}{bd : t}
do ¬signal → {p ∧ ¬signal}

skip;
ℓ := (ℓ + 1) mod 30;
full-page := ℓ = 0
{p}

⊓⊔ ¬signal ∧ full-page → {p ∧ ¬signal ∧ full-page}
signal := true
{p}

od
{p ∧ signal ∧ (signal ∨ ¬full-page)}
{signal ∧ full-page},

where we again identify

“print next line” ≡ skip.

The crucial task now is finding an appropriate loop invariant p and an appro-
priate bound function t that satisfy the premises of the fair repetition rule 39
and thus completing the proof outline.

As an invariant we take the assertion

p ≡ 0 ≤ ℓ ≤ 29 ∧ signal → full-page.
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The bounds for the variable ℓ appear because ℓ is incremented modulo 30.
Since the implications

¬signal ∧ ¬full-page ∧ ℓ = 0 → p

and
p ∧ signal → signal ∧ full-page

are true, p fits into the proof outline as given outside the do loop. To check
that p is kept invariant within the loop, we have to prove premise (1) of
the fair repetition rule 39. This is easily done because the loop components
consist only of assignment statements.

More difficult is the choice of a suitable bound function t. As in the previous
example PU1, the second component signal := true is responsible for the
(fair) termination of the loop. But because of the different guards in the loop,
the bound function

t ≡ if ¬signal then z2 + 1 else 0 fi

used for PU1 is not sufficient any more to establish premise (2) of the fair
repetition rule 39.

Indeed, for the first component we should prove

{ p ∧ ¬signal ∧ z1 ≥ 0 ∧ z2 ≥ 0
∧ if full-page then z2 + 2 else z2 + 1 fi = α}

skip;
ℓ := (ℓ + 1) mod 30;
full-page := ℓ = 0






≡ S1

{z2 + 1 < α},

which is wrong if full-page is initially false. In this case, however, the execution
of the command S1 approaches a state where full-page is true. If ℓ drops from
29 to 0, S1 sets full-page to true immediately. Otherwise S1 increments ℓ by
1 so that ℓ gets closer to 29 with the subsequent drop to 0.

Thus we observe here a hierarchy of changes:

• a change of the variable ℓ indicates progress toward
• a change of the variable full-page which (by fairness) indicates prog-ress

toward
• a selection of the second component that, by changing the variable signal,

leads to termination of the loop.

Proving termination of a loop with such a hierarchy of changes is best
done by a bound function t ranging over a product P of structures ordered
lexicographically by <lex (cf. Section 12.4).

Here we take
P = Z × Z × Z,
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which under <lex is well-founded on the subset

W = N × N × N,

and

t ≡ if ¬signal then (z2 + 1, int(full-page), 29 − ℓ)
else (0, 0, 0) fi,

where int(true) = 1 and int(false) = 0 (cf. Section 2.2). This definition of
t reflects the intended hierarchy of changes: a change in the first component
(variable z2) weighs more than a change in the second component (variable
full-page), which in turn weighs more than a change in the third component
(variable ℓ).

Now we can prove premise (2) of the fair repetition rule 39. For the first
loop component we have the following proof outline:

{ p ∧ ¬signal ∧ z1 ≥ 0 ∧ z2 ≥ 0 (12.11)
∧ if full-page then (z2 + 2, 0, 29 − ℓ)

else (z2 + 1, 1, 29 − ℓ) fi = α}
skip;
{if ℓ < 29 then (z2 + 1, 1, 29 − ℓ − 1) (12.12)

else (z2 + 1, 0, 0) fi <lex α}
ℓ := (ℓ + 1) mod 30;
{(z2 + 1, int(¬(ℓ = 0)), 29 − ℓ) <lex α} (12.13)
full-page := ℓ = 0
{(z2 + 1, int(¬full-page), 29 − ℓ) <lex α}. (12.14)

Obviously, the assertion (12.13) is obtained from (12.14) by performing the
backward substitution of the assignment axiom. To obtain assertion (12.12)
from (12.13) we recalled the definition of “modulo 30”:

ℓ := (ℓ + 1) mod 30

abbreviates
ℓ := ℓ + 1;
if ℓ < 30 then skip else ℓ := 0 fi,

and we applied the corresponding proof rules. Finally, by the skip axiom and
the rule of consequence, the step from assertion (12.11) to assertion (12.12)
is proved if we show the following implication:

if full-page then (z2 + 2, 0, 29 − ℓ)
else (z2 + 1, 1, 29 − ℓ) fi = α
→
if ℓ < 29 then (z2 + 1, 1, 29 − ℓ − 1)
else (z2 + 1, 0, 0) fi <lex α.

We proceed by case analysis.
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Case 1 full-page is true.
Then the implication is justified by looking at the first component of α :

z2 + 1 < z2 + 2.

Case 2 full-page is false.
If ℓ = 29, the implication is justified by the second component of α since

0 < 1; if ℓ < 29, it is justified by the third component of α since 29− ℓ− 1 <
29 − ℓ.

Compared with the first loop component dealing with the second loop
component is simpler: the correctness formula

{ p ∧ ¬signal ∧ full-page ∧ z1 ≥ 0 ∧ z2 ≥ 0
∧ ∃z2 ≥ 0 : (z2 + 1, 0, 29 − ℓ) = α}

signal := true
{(0, 0, 0) <lex α}

is true because the first component of α is ≥ 1. This finishes the proof of
premise (2) of the fair repetition rule 39.

Since premise (3) of rule 39 is obviously true, we have now a complete
proof outline for fair total correctness for the program PU2. Hence,

|=fair {true} PU2 {signal ∧ full-page}

as desired. ⊓⊔

Soundness

Finally, we prove soundness of the proof system FN . We concentrate here on
the soundness proof of the fair repetition rule.

Theorem 12.4. (Soundness of the Fair Repetition Rule) The fair repe-
tition rule 39 is sound for fair total correctness; that is, if its premises (1)–(3)
are true in the sense of total correctness, then its conclusion (12.2) is true
in the sense of fair total correctness.

Proof. Let S ≡ do ⊓⊔n
i=1 Bi → Si od. By the Fairness Corollary 12.1,

|=fair {p} S {p ∧
∧n

i=1 ¬Bi} iff |=tot {p} Tfair (S) {p ∧
∧n

i=1 ¬Bi}.

Thus rule 39 is sound if the truth of its premises (1)–(3) implies the truth of

{p} Tfair (S) {p ∧
∧n

i=1 ¬Bi},

all in the sense of total correctness.
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To show the latter, we establish three claims. In their proofs we repeatedly
use the Soundness of PNR and TNR Theorem 12.1(ii), which states soundness
of the proof system TNR for total correctness of nondeterministic programs
with random assignments. Let INIT , SCHi and UPDATEi be the parts added
to S by Tfair and let INV be the standard invariant established for FAIR in
the proof of the Fair Scheduling Theorem 12.2:

INV ≡
n∧

k=1

card {i ∈ {1, . . . , n} | zi ≤ −k} ≤ n − k.

The first claim establishes this invariant for the loop in Tfair (S) by merging
the invariants of FAIR and S.

Claim 1 For i ∈ {1, . . . , n}

|=tot {p ∧ Bi} Si {p} (12.15)

implies

|=tot {p ∧ INV ∧ Bi ∧ SCHi} UPDATEi; Si {p ∧ INV }. (12.16)

Proof of Claim 1. Since Si does not change z1, . . ., zn, the free variables of
INV , (12.15) implies by the soundness of the invariance rule A6

|=tot {p ∧ INV ∧ Bi} Si {p ∧ INV }. (12.17)

By the proof of the Fair Scheduling Theorem 12.2, UPDATEi satisfies

|=tot {INV ∧ SCHi} UPDATEi {INV }. (12.18)

Since UPDATEi only changes the variables z1, . . ., zn and they are not free in
p or Bi, (12.18) implies by the soundness of the invariance rule A6

|=tot {p ∧ INV ∧ Bi ∧ SCHi} UPDATEi {p ∧ INV ∧ Bi}. (12.19)

Now by the soundness of the composition rule, (12.19) and (12.17) imply
(12.16). ⊓⊔

Define the expression t′ by the following substitution performed on t:

t′ ≡ t[zi := zi + n]
i∈{1, . . . , n}.

This substitution represents a shift by n in the values of zi. It allows us to
consider t in the following claim only for values zi ≥ 0 whereas t′ takes care
of all the values that are possible for zi due to the invariant INV of the
scheduler FAIR, namely zi ≥ −n.
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Claim 2 For i ∈ {1, . . . , n}

|=tot { p ∧ Bi ∧ z̄ ≥ 0
∧ ∃zi ≥ 0 : t[zj := if Bj then zj + 1 else zj fi]j 6=i = α}

Si (12.20)
{t < α}

implies

|=tot {p ∧ INV ∧ Bi ∧ SCHi ∧ t′ = α}
UPDATEi; Si (12.21)
{t′ < α}.

Proof of Claim 2. Fix i ∈ {1, . . . , n}. Since the variables z1, . . ., zn are not
free in p,Bi or Si, substituting for j ∈ {1, . . . , n} the expression zj + n for zj

in the pre- and postcondition of (12.20) yields:

|=tot { p ∧ Bi ∧ z̄ ≥ −n
∧ ∃zi ≥ −n : t′[zj := if Bj then zj + 1 else zj fi]j 6=i = α}

Si (12.22)
{t′ < α}.

We use here the abbreviation

z̄ ≥ −n ≡ z1 ≥ −n ∧ . . . ∧ zn ≥ −n

and the definition of t′. This explains the change in the range of the existential
quantifier over the bound variable zi.

Next, by the truth of the axioms for ordinary and random assignments 2
and 37 and the soundness of the conditional rule 4 and the consequence rule 6
we get

|=tot {zi ≥ −n ∧ t′ = α}
UPDATEi (12.23)
{∃zi ≥ −n : t′[zj := if Bj then zj + 1 else zj fi]j 6=i = α}.

INV implies zi ≥ −n, so combining (12.19), established in the proof of Claim
1, and (12.23) yields by the soundness of the conjunction rule A4 and of the
consequence rule

|=tot {p ∧ INV ∧ Bi ∧ SCHi ∧ t′ = α}
UPDATEi (12.24)
{ p ∧ INV ∧ Bi

∧ ∃zi ≥ −n : t′[zj := if Bj then zj + 1 else zj fi]j 6=i = α}.

Since INV implies z̄ ≥ −n, the postcondition of (12.24) implies

p ∧ Bi ∧ z̄ ≥ −n
∧ ∃zi ≥ −n : t′[zj := if Bj then zj + 1 else zj fi]j 6=i = α,
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the precondition of (12.22). Thus, by the soundness of the consequence rule
and the composition rule, (12.24) and (12.22) imply (12.21). ⊓⊔

Claim 3
p ∧ z̄ ≥ 0 → t ∈ W (12.25)

implies
p ∧ INV → t′ ∈ W. (12.26)

Proof of Claim 3. By the definition of INV , the implication

p ∧ INV → p ∧ z̄ + n ≥ 0

holds, with z̄ + n ≥ 0 abbreviating z1 + n ≥ 0 ∧ . . . ∧ zn + n ≥ 0. Also,
substituting everywhere in (12.25) the expression zi +n for zi, i ∈ {1, . . . , n},
yields:

p ∧ z̄ + n ≥ 0 → t[zi := zi + n]
i∈{1, . . . , n} ∈ W.

Thus, by the definition of t′, (12.26) follows. ⊓⊔

We now return to the main proof. By Claims 1–3, the truth of the premises
(1)–(3) of the fair repetition rule 39 implies the truth of the following (cor-
rectness) formulas (in the sense of total correctness):

{p ∧ INV ∧ Bi ∧ SCHi} UPDATEi; Si {p ∧ INV },

{p ∧ INV ∧ Bi ∧ SCHi ∧ t = α} UPDATEi; Si {t′ < α}, i ∈ {1, . . . , n},

p ∧ INV → t′ ∈ W .

Also {p} INIT {p ∧ INV } is true, since z1, . . ., zn do not appear in p. The
soundness of the composition rule and the repetitive command III rule 38
implies the truth of

{p} INIT ; do ⊓⊔n
i=1 Bi ∧ SCHi → UPDATEi; Si od {p ∧

∧n

i=1 ¬Bi},

that is, the truth of

{p} Tfair (S) {p ∧
∧n

i=1 ¬Bi},

all in the sense of total correctness. This concludes the proof of Theorem 12.4.
⊓⊔

Corollary 12.2. (Soundness of FN) The proof system FN is sound for
fair total correctness of one-level nondeterministic programs.
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12.8 Case Study: Zero Search

In this section we study a nondeterministic solution to our introductory prob-
lem of zero search. Recall from Section 1.1 that given a function f from in-
tegers to integers the problem is to write a program that finds a zero of f
provided such a zero exists.

Here we consider the nondeterministic program

ZERO-N ≡ found := false; x := 0; y := 1;
do ¬found → x := x + 1;

found := f(x) = 0
⊓⊔ ¬found → y := y − 1;

found := f(y) = 0
od.

ZERO-N searches for a zero of f with the help of two subprograms: one
is searching for this zero by incrementing its test values (x := x + 1) and the
other one by decrementing them (y := y−1). The idea is that ZERO-N finds
the desired zero by activating these subprograms in a nondeterministic, but
fair order.

Summarizing, we wish to prove

|=fair {∃u : f(u) = 0} S {f(x) = 0 ∨ f(y) = 0}.

The correctness proof takes place in the new proof system FN and is divided
into three steps.

Step 1 We first show that ZERO-N works correctly if f has a positive zero
u:

|=fair {f(u) = 0 ∧ u > 0} ZERO-N {f(x) = 0 ∨ f(y) = 0}. (12.27)

A proof outline for fair total correctness has the following structure:

{f(u) = 0 ∧ u > 0}
found := false;
x := 0;
y := 1;
{f(u) = 0 ∧ u > 0 ∧ ¬found ∧ x = 0 ∧ y = 1}
{inv : p}{bd : t}
do ¬found → {p ∧ ¬found}

x := x + 1;
found := f(x) = 0
{p}

⊓⊔ ¬found → {p ∧ ¬found}
y := y − 1;
found := f(y) = 0



12.8 Case Study: Zero Search 443

{p}
od
{p ∧ found}
{f(x) = 0 ∨ f(y) = 0}.

It remains to find a loop invariant p and a bound function t that will complete
this outline.

Since the variable u is left unchanged by the program ZERO-N, certainly

f(u) = 0 ∧ u > 0

is an invariant. But for the completion of the proof outline we need a stronger
invariant relating u to the program variables x and found. We take as an
overall invariant

p ≡ f(u) = 0 ∧ u > 0 ∧ x ≤ u
∧ if found then f(x) = 0 ∨ f(y) = 0 else x < u fi.

Notice that the implications

f(u) = 0 ∧ u > 0 ∧ ¬found ∧ x = 0 ∧ y = 1 → p

and
p ∧ found → f(x) = 0 ∨ f(y) = 0

are obviously true and thus confirm the proof outline as given outside the do
loop.

To check the proof outline inside the loop, we need an appropriate bound
function. We observe the following hierarchy of changes:

• by the assumption of fairness, executing the second loop component brings
us closer to a switch to the first loop component,

• executing the first loop component brings us closer to the desired zero u
by incrementing the test value x by 1.

Hence, we take as partial order the set

P = Z × Z,

ordered lexicographically by <lex and well-founded on the subset

W = N × N,

and as bound function
t ≡ (u − x, z1).

In t the scheduling variable z1 counts the number of executions of the second
loop component before the next switch to the first one, and u−x, the distance
between the current test value x and the zero u, counts the remaining number
of executions of the first loop component.
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We now show that our choices of p and t complete the overall proof outline
as given inside the do loop. To this end, we have to prove in system FN the
premises (1′)–(3′) of the fair repetition rule 39′.

We begin with premise (1′). For the first loop component we have the
following proof outline:

{p ∧ ¬found}
{f(u) = 0 ∧ u > 0 ∧ x < u}
x := x + 1
{f(u) = 0 ∧ u > 0 ∧ x ≤ u}
{ f(u) = 0 ∧ u > 0 ∧ x ≤ u

∧ if f(x) = 0 then f(x) = 0 else x < u fi}
found := f(x) = 0
{ f(u) = 0 ∧ u > 0 ∧ x ≤ u

∧ if found then f(x) = 0 else x < u fi}
{p}.

Clearly, all implications expressed by successive assertions in this proof out-
line are true. The assignments are dealt with by backward substitution of the
assignment axiom.

This is also the case for the proof outline of the second loop component:

{p ∧ ¬found}
{f(u) = 0 ∧ u > 0 ∧ x < u}
y := y + 1
{f(u) = 0 ∧ u > 0 ∧ x < u}
{f(u) = 0 ∧ u > 0 ∧ x < u ∧ f(y) = 0 → f(y) = 0}
found := f(y) = 0
{f(u) = 0 ∧ u > 0 ∧ x < u ∧ found → f(y) = 0}
{ f(u) = 0 ∧ u > 0 ∧ x ≤ u

∧ if found then f(y) = 0 else x < u fi}
{p}.

We now turn to premise (2′) of rule 39′. For the first loop component we
have the proof outline:

{ ¬found ∧ f(u) = 0 ∧ u > 0 ∧ x < u
∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ ∃z1 ≥ 0 : (u − x, z1) = α}

{∃z1 ≥ 0 : (u − x, z1) = α}
{(u − x − 1, z1) <lex α}
x := x + 1;
{(u − x, z1) <lex α}
found := f(x) = 0
{(u − x, z1) <lex α}
{t <lex α}.

Thus the bound function t drops below α because the program variable x is
incremented in the direction of the zero u.
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For the second loop component we have the proof outline:

{ ¬found ∧ f(u) = 0 ∧ u > 0 ∧ x < u
∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ (u − x, z1 + 1) = α}

{(u − x, z1 + 1) = α}
{(u − x, z1) <lex α}
y := y − 1;
found := f(y) = 0
{(u − x, z1) <lex α}
{t <lex α}.

Notice that we can prove that the bound function t drops here below α only
with the help of the scheduling variable z1; the assignments to the program
variables y and found do not affect t at all.

Finally, premise (3′) of rule 39′ follows from the implications

p ∧ z̄ ≥ 0 → x ≤ u ∧ z1 ≥ 0

and
x ≤ u ∧ z1 ≥ 0 → t ∈ W.

This completes the proof of (12.27).

Step 2 Next we assume that f has a zero u ≤ 0. The claim now is

|=fair {f(u) = 0 ∧ u ≤ 0} ZERO-N {f(x) = 0 ∨ f(y) = 0}. (12.28)

Its proof is entirely symmetric to that of Step 1: instead of the first loop
component now the second one is responsible for finding the zero.

In fact, as loop invariant we take

p ≡ f(u) = 0 ∧ u ≤ 0 ∧ u ≤ y
∧ if found then f(x) = 0 ∨ f(y) = 0 else u < y fi

and as bound function
t ≡ (y − u, z2).

The well-founded structure is as before:

W = N × N.

Step 3 We combine the results (12.27) and (12.28) of Step 1 and Step 2.
Using the disjunction rule A3 and the rule of consequence, we obtain

|=fair {f(u) = 0} ZERO-N {f(x) = 0 ∨ f(y) = 0}.

A final application of the ∃-introduction rule A5 yields

|=fair {∃u : f(u) = 0} ZERO-N {f(x) = 0 ∨ f(y) = 0},
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the desired result about ZERO-N.

12.9 Case Study: Asynchronous Fixed Point
Computation

In this section we verify a nondeterministic program for computing fixed
points. The correctness of this program depends on the fairness assumption.
For pedagogical reasons we first study an example where the main idea for
the termination argument is exercised.

Example 12.7. Consider a program

S ≡ do B1 → S1⊓⊔. . .⊓⊔Bn → Sn od

with the following property: the index set {1, . . . , n} is partitioned into sets
K and L with L 6= ∅, such that executing any subprogram Sk with k ∈ K
does not change the program state, whereas executing any subprogram Sℓ

with ℓ ∈ L yields a new program state which is closer to a terminal state of
S.

More specifically, we take

B ≡ x 6= 0, Sk ≡ skip for k ∈ K and Sℓ ≡ x := x − 1 for ℓ ∈ L,

where x is an integer variable. For any choice of K and L we wish to prove

|=fair {x ≥ 0} S {x = 0}

with the help of the fair repetition rule 39′ of system FN. As invariant we
take

p ≡ x ≥ 0.

This choice obviously satisfies premise (1) of rule 39′.
To find an appropriate bound function, let us first consider the case where

K = {1, . . ., n − 1} and L = {n}; that is, where

S ≡ do x 6= 0 → skip ⊓⊔. . .⊓⊔ x 6= 0 → skip
︸ ︷︷ ︸

n − 1 times

⊓⊔ x 6= 0 → x := x − 1 od.

As in Example 12.6, we observe a hierarchy of changes:

• executing one of the n − 1 subprograms skip; the assumption of fairness
implies that the subprogram Sn ≡ x := x− 1 cannot be neglected forever,

• executing Sn decrements x, thus bringing us closer to the termination of
S.
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Since the number of rounds through the loop during which Sn is neglected
is counted by the scheduling variable zn referring to Sn, we arrive at the
bound function

t ≡ (x, zn)

ranging over the well-founded structure W = N×N ordered lexicographically
by <lex .

Clearly, p and t satisfy premise (3) of rule 39′. By the simple form of the
subprograms of S, checking premise (2) of rule 39′ boils down to checking
the following implications:

• for Sk ≡ skip where k ∈ {1, . . ., n − 1}:

x > 0 ∧ zn ≥ 0 ∧ (x, zn + 1) = α → (x, zn) <lex α,

• for Sn ≡ x := x − 1:

x > 0 ∧ zn ≥ 0 ∧ ∃zn ≥ 0 : (x, zn) = α → (x − 1, zn) <lex α.

These implications are obviously true.
Thus the fair repetition rule 39′ and the rule of consequence yield

|=fair {x ≥ 0} S {x = 0}

as claimed.
Let us now turn to the general case of sets K and L where it is not only

subprogram Sn that is responsible for decrementing x, but any subprogram
Sℓ with ℓ ∈ L will do. Then the number of rounds neglecting any of these sub-
programs is given by min {zℓ | ℓ ∈ L} with zℓ being the scheduling variable
referring to Sℓ. This leads to

t ≡ (x,min {zℓ | ℓ ∈ L})

as a suitable bound function for the general case. ⊓⊔

Before we formulate the problem we wish to solve, we need to introduce
some auxiliary notions first. A partial order is a pair (A, ⊑ ) consisting of a
set A and a reflexive, antisymmetric and transitive relation ⊑ on A.

Consider now a partial order (A, ⊑ ). Let a ∈ A and X ⊑ A. Then a is
called the least element of X if a ∈ X and a ⊑ x for all x ∈ X. The element a
is called an upper bound of X if x ⊑ a for all x ∈ X. Note that upper bounds
of X need not be elements of X. Let U be the set of all upper bounds of X.
Then a is called the least upper bound of X if a is the least element of U .

A partial order (A, ⊑ ) is called complete if A contains a least element
and if for every ascending chain

a0 ⊑ a1 ⊑ a2 . . .
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of elements from A the set

{a0, a1, a2, . . .}

has a least upper bound.
Now we turn to the problem of computing fixed points. Let (L, ⊑ ) be a

complete partial order. For x, y ∈ L we write x ⊏ y if x ⊑ y and x 6= y. Let
⊐ denote the inverse of ⊏ ; so x ⊐ y if y ⊏ x holds. Assume that (L, ⊑ )

has the finite chain property, that is, every ascending chain

x1 ⊑ x2 ⊑ x3 ⊑ . . .

of elements xi ∈ L stabilizes. In other words, there is no infinite increasing
chain

x1 ⊏ x2 ⊏ x3 ⊏ . . .

in L, or equivalently, the inverse relation ⊐ is well-founded on L.
We consider here the n-fold Cartesian product Ln of L for some n ≥ 2.

The relation ⊑ is extended componentwise from L to Ln:

(x1, . . ., xn) ⊑ (y1, . . ., yn) iff ∀(1 ≤ i ≤ n) : xi ⊑ yi.

We also extend the relation ⊏ and its inverse ⊐ :

(x1, . . ., xn) ⊏ (y1, . . ., yn) iff (x1, . . ., xn) ⊑ (y1, . . ., yn)
and (x1, . . ., xn) 6= (y1, . . ., yn),

(x1, . . ., xn) ⊐ (y1, . . ., yn) iff (y1, . . ., yn) ⊏ (x1, . . ., xn).

Then also the pair (Ln, ⊑ ) is a complete partial order with the finite chain
property. Let ∅ denote the least element in Ln.

Consider now a function
F : Ln → Ln

which is monotonic under ⊑ ; that is, whenever (x1, . . ., xn) ⊑ (y1, . . ., yn)
then F (x1, . . ., xn) ⊑ F (y1, . . ., yn).

By Fi we denote the ith component function

Fi : Ln → L

of F . Thus we define Fi as follows:

Fi(x1, . . ., xn) = yi iff F (x1, . . ., xn) = (y1, . . ., yn).

Since ⊑ is defined componentwise and F is monotonic, the functions Fi are
also monotonic under ⊑ .

By a general theorem due to Knaster and Tarski (see Tarski [1955]), F has
a least fixed point µF ∈ Ln; that is,

F (µF ) = µF
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and
F (x1, . . ., xn) = (x1, . . ., xn) implies µF ⊑ (x1, . . ., xn).

Usually µF is computed as follows. Starting with the least element ∅ in Ln

the operator F is applied iteratively:

∅ ⊑ F (∅) ⊑ F (F (∅)) ⊑ F (F (F (∅))) ⊑ . . . .

By the finite chain property of Ln, this iteration process will surely stabilize
by the least fixed point µF . Since an application of F requires a simultaneous
update of all n components of its arguments, this method of computing µF
is called a synchronous fixed point computation.

Following Cousot and Cousot [1977b] we are interested here in a more
flexible method. We wish to compute µF asynchronously by employing n
subprograms Si, for i ∈ {1, . . . , n}, where each of them is allowed to ap-
ply only the ith component function Fi. These subprograms are activated
nondeterministically by the following program:

AFIX ≡ do B → x1 := F1(x̄)⊓⊔. . .⊓⊔B → xn := Fn(x̄) od,

where x̄ ≡ (x1, . . ., xn) and B ≡ x̄ 6= F (x̄). In general AFIX will not compute
µF , but the claim is that it will do so under the assumption of fairness:

|=fair {x̄ = ∅} AFIX {x̄ = µF}. (12.29)

This correctness result is a special case of a more general theorem proved in
Cousot and Cousot [1977b].

We would like to prove (12.29) in the system FN. To this end, we proceed
in two steps.

Step 1 We start with an informal analysis of AFIX. Consider a computation

ξ :< AFIX, σ >=< S1, σ1 > → . . . → < Sj , σj > → . . .

of AFIX and the abbreviations σj(x̄) = (σj(x1), . . ., σj(xn)) for j ≥ 1 and

Fi[x̄] = (x1, . . ., xi−1, Fi(x̄), xi+1, . . ., xn)

for i ∈ {1, . . . , n}. Since σ1(x̄) = ∅ holds and the component functions Fi are
monotonic, the assertion

∅ ⊑ x̄ ⊑ Fi[x̄] ⊑ µF (12.30)

is true for i ∈ {1, . . . , n} in every state σj of ξ. Thus, by the least fixed point
property, x̄ = µF holds as soon as AFIX has terminated with x̄ = F (x̄).

But why does AFIX terminate? Note that by (12.30) AFIX produces an
ascending chain

σ1(x̄) ⊑ . . . ⊑ σj(x̄) ⊑ . . .
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of values in the variable x̄. That there exists a state σj in which x̄ = F (x̄)
relies on the following two facts.

(i) By the finite chain property of L and hence Ln, the values σj(x̄) ∈ Ln

cannot be increased infinitely often.
(ii) By the assumption of fairness, the values σj(x̄) cannot be constant

arbitrarily long without increasing.

(i) is clear, but (ii) needs a proof. Consider some nonterminal state σj

in ξ (thus satisfying B ≡ x̄ 6= F (x̄)) for which either σj(x̄) = σ1(x̄) (start)
or σj−1(x̄) ⊏ σj(x̄) (increase just happened) holds. Then we can find two
index sets K and L, both depending on σj , which partition the subprograms
S1, . . ., Sn of AFIX into subsets {Sk | k ∈ K} and {Sℓ | ℓ ∈ L} such that the
Sk stabilize the values of x̄, so for k ∈ K, x̄ = Fk[x̄] holds in σj , whereas the
Sℓ increase the values of x̄, so for ℓ ∈ L, x̄ ⊏ Fℓ[x̄] holds in σj . Note that
L 6= ∅ holds because σj is nonterminal.

Thus, as long as subprograms Sk with k ∈ K are executed, the program
AFIX generates states σj+1, σj+2, . . . satisfying

σj(x̄) = σj+1(x̄) = σj+2(x̄) = . . . .

But as soon as a subprogram Sℓ with ℓ ∈ L is executed in some state σm

with j ≤ m, we get the desired next increase

σm(x̄) ⊏ σm+1(x̄)

after σj . Fairness guarantees that such an increase will indeed happen.
The situation is close to that investigated in Example 12.7, except for the

following changes:

• instead of decrementing an integer variable x, here x̄ = (x1, . . ., xn) is
increased in the ordering ⊏ on Ln,

• the number of possible increases of x̄ is unknown but finite,
• the index sets K and L depend on the state σj .

Step 2 With this informal discussion in mind, we are now prepared for the
formal correctness proof. The essential step is the application of the fair
repetition rule 39′. A suitable invariant is

p ≡
n∧

i=1

(∅ ⊑ x̄ ⊑ Fi[x̄] ⊑ µF ).

Clearly, p satisfies premise (1′) of rule 39′.
By analogy to Example 12.7, we take as the well-founded structure the set

W = Ln × N

ordered lexicographically as follows:
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(x̄, u) <lex (ȳ, v) iff x̄ ⊐ ȳ or (x̄ = ȳ and u < v),

with the inverse relation ⊐ in the first component because increasing x̄
means getting closer to the desired fixed point, hence termination. The com-
ponents x̄ and u of pairs (x̄, u) ∈ Ln × N correspond to the facts (i) and (ii)
about the termination of AFIX explained in Step 1. Since Ln has the finite
chain property, <lex is indeed well-founded on Ln ×N. The bound function
ranging over W is given by

t ≡ (x̄,min {zℓ | 1 ≤ ℓ ≤ n ∧ x̄ ⊏ Fℓ[x̄]}).

Compared with Example 12.7, the condition ℓ ∈ L is replaced here by “1 ≤
ℓ ≤ n ∧ x̄ ⊏ Fℓ[x̄].”

To establish premise (2′) of rule 39′, we have to prove the correctness
formula

{p ∧ B ∧ z̄ ≥ 0 ∧ ∃zi ≥ 0 : t[zj := zj + 1]j 6=i = α}
xi := Fi(x̄)
{t <lex α}

for i ∈ {1, . . . , n}. By the assignment axiom, it suffices to prove the implica-
tion

p ∧ B ∧ z̄ ≥ 0 ∧ ∃zi ≥ 0 : t[zj := zj + 1]j 6=i = α
→ t[xi := Fi(x̄)] <lex α. (12.31)

We distinguish two cases.

Case 1 x̄ ⊏ Fi[x̄].
Then t[xi := Fi(x̄)] <lex α by the first component in the lexicographical

order.

Case 2 x̄ = Fi[x̄].
Since B ≡ x̄ 6= F (x̄) holds, there exist indices ℓ ∈ {1, . . . , n} with

x̄ ⊏ Fℓ[x̄]. Moreover, ℓ 6= i for all such indices because x̄ = Fi[x̄]. Thus
implication (12.31) is equivalent to

p ∧ B ∧ z̄ ≥ 0 ∧ (x̄,min {zℓ + 1 | 1 ≤ ℓ ≤ n ∧ x̄ ⊏ Fℓ(x̄)}) = α
→ (x̄,min {zℓ | 1 ≤ ℓ ≤ n ∧ x̄ ⊏ Fℓ(x̄)}) <lex α.

So (x̄,min {zℓ | . . .}) <lex α by the second component in the lexicograph-
ical order.

This proves (12.31) and hence premise (2′) of the fair repetition rule 39′.
Since premise (3′) of rule 39′ is clearly satisfied, we have proved

|=fair {p} AFIX {p ∧ ¬B}.

By the rule of consequence, we obtain the desired correctness result (12.29).
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12.10 Exercises

12.1. Prove the Input/Output Lemma 10.3 for nondeterministic programs
with random assignments.

12.2. Prove the Change and Access Lemma 10.4 for non- deterministic pro-
grams with random assignments.

12.3. Prove the Soundness of PNR and TNR Theorem 12.1.

12.4. The instruction x :=? ≤ y which sets x to a value smaller or equal to
y was proposed in Floyd [1967b].

(i) Define the instruction’s semantics.
(ii) Suggest an axiom for this instruction.
(iii) Prove that for some nondeterministic program S

Mtot [[x :=? ≤ y]] = Mtot [[S]].

12.5. Prove that for no nondeterministic program S

Mtot [[x :=?]] = Mtot [[S]].

Hint. Use the Bounded Nondeterminism Lemma 10.1.

12.6. Formalize forward reasoning about random assignments by giving an
alternative axiom of the form {p} x :=? {. . .}.

12.7. Consider the program

S ≡ do x ≥ 0 → x := x − 1; y :=?
⊓⊔ y ≥ 0 → y := y − 1
od,

where x and y are integer variables.

(i) Prove termination of S by proving the correctness formula

{true} S {true}

in the system TNR.
(ii) Explain why it is impossible to use an integer expression as a bound

function in the termination proof of S.
Hint. Show that for a given initial state σ with σ(x) > 0 it is impossible
to predict the number of loop iterations in S.

12.8. Give for the printer-user program PU1 considered in Example 12.4 a
simplified transformed program T ∗

fair(PU1) which uses only one scheduling
variable z, such that

Mfair [[PU1]] = Mtot [[T
∗
fair(PU1)]] mod {z}.
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12.9. Consider the premises (2) and (2′) of the fair repetition rules 39 and 39′.
Let z1 and z2 be integer variables. For which of the expressions t ≡ z1 + z2,
t ≡ (z1, z2) and t ≡ (z2, z1) is the correctness formula

{∃z1 ≥ 0 : t[z1 := z1 + 1] = α} skip {t < α}

true? Depending on the form of t, the symbol < is interpreted as the usual
ordering on Z or as the lexicographic ordering on Z × Z.

12.10. Consider the one-level nondeterministic program

S ≡ do x > 0 → go := true
⊓⊔ x > 0 → if go then x := x − 1; go := false fi
od,

where x is an integer variable and go is a Boolean variable.

(i) Show that S can diverge from any state σ with σ(x) > 0.
(ii) Show that every fair computation of S is finite.
(iii) Exhibit the transformed program Tfair (S).
(iv) Show that every computation of Tfair (S) is fair.
(v) Prove the fair termination of S by proving the correctness formula

{true} S {true}

in the system FN.

12.11. Consider a run
(E0, i0). . .(Ej , ij). . .

of n components. We call it weakly fair if it satisfies the following condition:

∀(1 ≤ i ≤ n) : (
∞

∀j ∈ N : i ∈ Ej →
∞

∃j ∈ N : i = ij).

The quantifier
∞

∀ is dual to
∞

∃ and stands for “for all but finitely many.”

(i) Define a weakly fair nondeterminism semantics Mwfair of one-level non-
deterministic programs by analogy with Mfair. Prove that for all one-
level nondeterministic programs S and proper states σ

Mfair [[S]](σ) ⊆Mwfair [[S]](σ).

(ii) Define a scheduler WFAIR as the scheduler FAIR but with

UPDATEi ≡ zi :=?;
for all j ∈ {1, . . . , n} − {i} do

if j ∈ E then zj := zj − 1 else zj :=? fi
od.
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Define the notions of a weakly fair scheduler and of a universal weakly
fair scheduler by analogy with fair schedulers (see Definition 12.3). Prove
that for n components WFAIR is a universal weakly fair scheduler.
Hint. Modify the proof of the FAIR Scheduling Theorem 12.2.

(iii) Define a transformation Twfair by analogy with the transformation Tfair .
Prove that for every one-level nondeterministic program S and every
proper state σ

Mwfair [[S]](σ) = Mtot [[Twfair (S)]](σ) mod Z,

where Z is the set of scheduling variables zi used in Twfair .
Hint. Modify the proof of the Embedding Theorem 12.3.

(iv) Define the notion of weakly fair total correctness by analogy with fair
total correctness. Consider the following weakly fair repetition rule:

(1) {p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
(2) {p ∧ Bi ∧ z̄ ≥ 0

∧ ∃zi ≥ 0 : ∃ū ≥ 0 : t[if Bj then zj + 1 else uj fi]j 6=i = α}
Si

{t < α}, i ∈ {1, . . . , n},
(3) p ∧ z̄ ≥ 0 → t ∈ W

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n

i=1 ¬Bi}

where

• u1, . . ., un are integer variables that do not occur in p, t, Bi or Si, for
i ∈ {1, . . . , n},

• ∃ū ≥ 0 abbreviates ∃u1 ≥ 0 : . . . : ∃un ≥ 0,

and conditions (i)–(v) of the fair repetition rule 39 hold.
Prove that the weakly fair repetition rule is sound for weakly fair total
correctness.
Hint. Modify the proof of the Soundness of the Fair Repetition Rule
Theorem 12.4.

(v) Identify
“print next line” ≡ skip.

Prove
{true} PU1 {true}

in the sense of weakly fair total correctness using the weakly fair repe-
tition rule. The program PU1 is defined in Section 12.1.
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12.11 Bibliographic Remarks

Nondeterministic programs augmented by the random assignment are exten-
sively studied in Apt and Plotkin [1986], where several related references can
be found.

The verification method presented in this chapter is based on the transfor-
mational approach of Apt and Olderog [1983]. Different methods were pro-
posed independently in Lehmann, Pnueli and Stavi [1981] and Grumberg,
Francez, Makowsky and de Roever [1985].

In all these papers fairness was studied only for one-level nondeterministic
programs. In Apt, Pnueli and Stavi [1984] the method of Apt and Olderog
[1983] was generalized to arbitrary nondeterministic programs. Francez [1986]
provides an extensive coverage of the subject including a presentation of these
methods.

We discussed here two versions of fairness —strong and weak. Some other
versions are discussed in Francez [1986]. More recently an alternative notion,
called finitary fairness, was proposed by Alur and Henzinger [1994]. Finitary
fairness requires that for every run of a system there is an unknown but fixed
bound k such that no enabled transition is postponed more than k consecutive
times.

Current work in this area has concentrated on the study of fairness for con-
current programs. Early references include Olderog and Apt [1988], where
the transformational approach discussed here was extended to parallel pro-
grams and Back and Kurki-Suonio [1988] and Apt, Francez and Katz [1988],
where fairness for distributed programs was studied. More recent references
include Francez, Back and Kurki-Suonio [1992] and Joung [1996].

In Olderog and Podelski [2009] it is investigated whether the approach
of explicit fair scheduling also works with dynamic control, i.e., when new
processes may be created dynamically. It is shown that the schedulers defined
in Olderog and Apt [1988] carry over to weak fairness but not to strong
fairness.

The asynchronous fixpoint computation problem studied in Section 12.9
has numerous applications, for example in logic programming, see Lassez and
Maher [1984], and in constraint programming, see van Emden [1997].





Appendix A Semantics

The following transition axioms and rules were used in this book to define
semantics of the programming languages.

(i) < skip, σ > → < E, σ >

(ii) < u := t, σ > → < E, σ[u := σ(t)] >

where u ∈ V ar is a simple variable or u ≡ a[s1, . . . , sn], for a ∈ V ar.

(ii ′) < x̄ := t̄, σ > → < E, σ[x̄ := σ(t̄)] >

(iii)
< S1, σ > → < S2, τ >

< S1; S, σ > → < S2; S, τ >

(iv) < if B then S1 else S2 fi, σ > → < S1, σ > where σ |= B.

(v) < if B then S1 else S2 fi, σ > → < S2, σ > where σ |= ¬B.

(iv ′) < if B → S fi, σ > → < S, σ > where σ |= B.

(v ′) < if B → S fi, σ > → < E, fail > where σ |= ¬B.

(vi) < while B do S od, σ > → < S; while B do S od, σ >

where σ |= B.

(vii) < while B do S od, σ > → < E, σ > where σ |= ¬B.

(viii) < P, σ > → < S, σ >, where P :: S ∈ D.

(ix) < begin local x̄ := t̄;S end, σ > → < x̄ := t̄;S; x̄ := σ(x̄), σ >

(x) < P (t̄), σ > → < begin local ū := t̄ end, σ >

where P (ū) :: S ∈ D.

(xi) < u := t, σ >→< E, σ[u := σ(t)] >

where u is a (possibly subscripted) instance variable.

(xii) < s.m, σ >→< begin local this := s;S end, σ >

where σ(s) 6= null and m :: S ∈ D.
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(xiii) < s.m, σ >→< E, fail > where σ(s) = null.

(xiv) < s.m(t̄), σ >→< begin local this, ū := s, t̄;S end, σ >

where σ(s) 6= null and m(ū) :: S ∈ D.

(xv) < s.m(t̄), σ >→< E, fail > where σ(s) = null.

(xvi) < u := new, σ >→< E, σ[u := new] >,

where u is a (possibly subscripted) object variable.

(xvii)
< Si, σ > → < Ti, τ >

< [S1‖. . .‖Si‖. . .‖Sn], σ > → < [S1‖. . .‖Ti‖. . .‖Sn], τ >

where i ∈ {1, . . . , n}

(xviii)
< S, σ > →∗ < E, τ >

< 〈S〉, σ > → < E, τ >

(xix)
< S, σ > →∗ < E, τ >

< await B then S end, σ > → < E, τ >
where σ |= B.

(xx) < if ⊓⊔n
i=1 Bi → Si fi, σ > → < Si, σ >

where σ |= Bi and i ∈ {1, . . . , n}.

(xxi) < if ⊓⊔n
i=1 Bi → Si fi, σ > → < E, fail > where σ |=

∧n
i=1 ¬Bi.

(xxii) < do ⊓⊔n
i=1 Bi → Si od, σ > → < Si; do ⊓⊔n

i=1 Bi → Si od, σ >

where σ |= Bi and i ∈ {1, . . . , n}.

(xxiii) < do ⊓⊔n
i=1 Bi → Si od, σ > → < E, σ > where σ |=

∧n

i=1 ¬Bi.

(xxiv) < do ¤m
j=1 gj → Sj od, σ > → < E, σ >

where for j ∈ {1, . . .,m} gj ≡ Bj ;αj and σ |=
∧m

j=1 ¬Bj .

(xxv) < [S1‖. . .‖Sn], σ > → < [S′
1‖. . .‖S

′
n], τ >

where for some k, ℓ ∈ {1, . . ., n}, k 6= ℓ

Sk ≡ do ¤
m1

j=1 gj → Rj od,

Sℓ ≡ do ¤
m2

j=1 hj → Tj od,

for some j1 ∈ {1, . . .,m1} and j2 ∈ {1, . . .,m2} the generalized
guards gj1 ≡ B1;α1 and hj2 ≡ B2;α2 match, and

(1) σ |= B1 ∧ B2,

(2) M[[Eff(α1, α2)]](σ) = {τ},

(3) S′
i ≡ Si for i 6= k, ℓ,

(4) S′
k ≡ Rj1 ; Sk,

(5) S′
ℓ ≡ Tj2 ; Sℓ.

(xxvi) < x :=?, σ > → < E, σ[x := d] > for every natural number d.



Appendix B Axioms and Proof Rules

The following axioms and proof rules were used in the proof systems studied
in this book.

AXIOM 1: SKIP
{p} skip {p}

AXIOM 2: ASSIGNMENT

{p[u := t]} u := t {p}

where u ∈ V ar or u ≡ a[s1, . . . , sn], for a ∈ V ar.

AXIOM 2 ′: PARALLEL ASSIGNMENT

{p[x̄ := t̄]} x̄ := t̄ {p}

RULE 3: COMPOSITION

{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}

RULE 4: CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

RULE 4 ′: FAILURE
{p ∧ B} S {q}

{p} if B → S fi {q}

459



460 B Axioms and Proof Rules

RULE 4 ′′: FAILURE II

p → B, {p} S {q}

{p} if B → S fi {q}

RULE 5: LOOP

{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B}

RULE 6: CONSEQUENCE

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

RULE 7: LOOP II

{p ∧ B} S {p},
{p ∧ B ∧ t = z} S {t < z},
p → t ≥ 0

{p} while B do S od {p ∧ ¬ B}

where t is an integer expression and z is an integer variable that does not
appear in p,B, t or S.

RULE 8: RECURSION

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q},
{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {pi} Si {qi}, i ∈ {1, . . ., n}

{p} S {q}

where D = P1 :: S1, . . . , Pn :: Sn.

RULE 9: RECURSION II

{p1} P1 {q1}, . . . , {pn} Pn {qn} ⊢ {p} S {q},
{p1 ∧ t < z} P1 {q1}, . . . , {pn ∧ t < z} Pn {qn} ⊢

{pi ∧ t = z} Si {qi}, i ∈ {1, . . ., n},
pi → t ≥ 0, i ∈ {1, . . ., n}

{p} S {q}

where D = P1 :: S1, . . . , Pn :: Sn and z is an integer variable that does not
occur in pi, t, qi and Si for i ∈ {1, . . . , n} and is treated in the proofs as a
constant.
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RULE 10: BLOCK

{p} x̄ := t̄;S {q}

{p} begin local x̄ := t̄;S end {q}

where {x̄} ∩ free(q) = ∅.

RULE 11: INSTANTIATION

{p} P (x̄) {q}

{p[x̄ := t̄]} P (t̄) {q[x̄ := t̄]}

where var(x̄) ∩ var(D) = var(t̄) ∩ change(D) = ∅.

RULE 12: RECURSION III

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢ {p} S {q},
{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢

{pi} begin local ūi := t̄i;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

RULE 12 ′: MODULARITY

{p0} P (x̄) {q0} ⊢ {p0} begin local ū := x̄;S end {q0},
{p0} P (x̄) {q0}, {p} P (x̄) {q} ⊢ {p} begin local ū := x̄;S end {q}

{p} P (x̄) {q}

where var(x̄) ∩ var(D) = ∅ and D = P (ū) :: S.

RULE 13: RECURSION IV

{p1} P1(ē1) {q1}, . . . , {pn} Pn(ēn) {qn} ⊢tot {p} S {q},
{p1 ∧ t < z} P1(ē1) {q1}, . . . , {pn ∧ t < z} Pn(ēn) {qn} ⊢tot

{pi ∧ t = z} begin local ūi := ēi;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ūi) :: Si ∈ D, for i ∈ {1, . . ., n}, and z is an integer variable that
does not occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs
as a constant.

AXIOM 14: ASSIGNMENT TO INSTANCE VARIABLES

{p[u := t]} u := t {p}

where u ∈ IV ar or u ≡ a[s1, . . . , sn] and a ∈ IV ar.
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RULE 15: INSTANTIATION II

{p} y.m {q}

{p[y := s]} s.m {q[y := s]}

where y 6∈ var(D) and var(s) ∩ change(D) = ∅.

RULE 16: RECURSION V

{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢ {p} S {q},
{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢

{pi} begin local this := si;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi :: Si ∈ D for i ∈ {1, . . . , n}.

RULE 17: RECURSION VI

{p1} s1.m1 {q1}, . . . , {pn} sn.mn {qn} ⊢ {p} S {q},
{p1 ∧ t < z} s1.m1 {q1}, . . . , {pn ∧ t < z} sn.mn {qn} ⊢

{pi ∧ t = z} begin local this := si;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi :: Si ∈ D, for i ∈ {1, . . . , n}, and z is an integer variable that does
not occur in pi, t, qi and Si for i ∈ {1, . . ., n} and is treated in the proofs as
a constant.

RULE 18: INSTANTIATION III

{p} y.m(x̄) {q}

{p[y, x̄ := s, t̄]} s.m(t̄) {q[y, x̄ := s, t̄]}

where y, x̄ is a sequence of simple variables in V ar which do not appear in
D and var(s, t̄) ∩ change(D) = ∅.

RULE 19: RECURSION VII

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢ {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢

{pi} begin local this, ūi := si, t̄i;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.
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RULE 20: RECURSION VIII

{p1} s1.m1(ē1) {q1}, . . . , {pn} sn.mn(ēn) {qn} ⊢ {p} S {q},
{p1 ∧ t < z} s1.m1(ē1) {q1}, . . . , {pn ∧ t < z} sn.mn(ēn) {qn} ⊢

{pi ∧ t = z} begin local this, ūi := si, ēi; Si end {qi}, i ∈ {1, . . ., n}
pi → si 6= null, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D, for i ∈ {1, . . . , n}, and and z is an integer variable
that does not occur in pi, t, qi and Si for i ∈ {1, . . . , n} and is treated in the
proofs as a constant.

AXIOM 21: OBJECT CREATION

{p[x := new]} x := new {p},

where x ∈ V ar is a simple object variable and p is a pure assertion.

RULE 22: OBJECT CREATION

p′ → p[u := x]

{p′[x := new]} u := new {p}

where u is a subscripted normal object variable or a (possibly subscripted)
instance object variable, x ∈ V ar is a fresh simple object variable which does
not occur in p, and p′ is a pure assertion.

RULE 23: SEQUENTIALIZATION

{p} S1; . . .; Sn {q}

{p} [S1‖. . .‖Sn] {q}

RULE 24: DISJOINT PARALLELISM

{pi} Si {qi}, i ∈ {1, . . . , n}

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

where free(pi, qi) ∩ change(Sj) = ∅ for i 6= j.

RULE 25: AUXILIARY VARIABLES

{p} S {q}

{p} S0 {q}

where for some set of auxiliary variables A of S with free(q) ∩ A = ∅, the
program S0 results from S by deleting all assignments to the variables in A.
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RULE 26: ATOMIC REGION

{p} S {q}

{p} 〈S〉 {q}

RULE 27: PARALLELISM WITH SHARED VARIABLES

The standard proof outlines {pi} S∗
i {qi},

i ∈ {1, . . . , n}, are interference free

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

RULE 28: SYNCHRONIZATION

{p ∧ B} S {q}

{p} await B then S end {q}

RULE 29: PARALLELISM WITH DEADLOCK FREEDOM

(1) The standard proof outlines {pi} S∗
i {qi}, i ∈ {1, . . . , n}

for weak total correctness are interference free,
(2) For every potential deadlock (R1, . . ., Rn) of

[S1‖. . .‖Sn] the corresponding tuple of
assertions (r1, . . ., rn) satisfies ¬

∧n

i=1 ri.

{
∧n

i=1 pi} [S1‖. . .‖Sn] {
∧n

i=1 qi}

RULE 30: ALTERNATIVE COMMAND

{p ∧ Bi} Si {q}, i ∈ {1, . . . , n}

{p} if ⊓⊔n
i=1 Bi → Si fi {q}

RULE 31: REPETITIVE COMMAND

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n}

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n
i=1 ¬Bi}

RULE 32: ALTERNATIVE COMMAND II

p →
∨n

i=1 Bi,
{p ∧ Bi} Si {q}, i ∈ {1, . . . , n}

{p} if ⊓⊔n
i=1 Bi → Si fi {q}
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RULE 33: REPETITIVE COMMAND II

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
{p ∧ Bi ∧ t = z} Si {t < z}, i ∈ {1, . . . , n},
p → t ≥ 0

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n
i=1 ¬Bi}

where t is an integer expression and z is an integer variable not occurring in
p, t, Bi or Si for i ∈ {1, . . . , n}.

RULE 34: DISTRIBUTED PROGRAMS

{p} S1,0; . . .; Sn,0 {I},
{I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ

{p} S {I ∧ TERM}

RULE 35: DISTRIBUTED PROGRAMS II

(1) {p} S1,0; . . .; Sn,0 {I},
(2) {I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ,
(3) {I ∧ Bi,j ∧ Bk,ℓ ∧ t = z} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {t < z}

for all (i, j, k, ℓ) ∈ Γ,
(4) I → t ≥ 0

{p} S {I ∧ TERM}

where t is an integer expression and z is an integer variable not appearing in
p, t, I or S.

RULE 36: DISTRIBUTED PROGRAMS III

(1) {p} S1,0; . . .; Sn,0 {I},
(2) {I ∧ Bi,j ∧ Bk,ℓ} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {I}

for all (i, j, k, ℓ) ∈ Γ,
(3) {I ∧ Bi,j ∧ Bk,ℓ ∧ t = z} Eff(αi,j , αk,ℓ); Si,j ; Sk,ℓ {t < z}

for all (i, j, k, ℓ) ∈ Γ,
(4) I → t ≥ 0,
(5) I ∧ BLOCK → TERM

{p} S {I ∧ TERM}

where t is an integer expression and z is an integer variable not appearing in
p, t, I or S.
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AXIOM 37: RANDOM ASSIGNMENT

{∀x ≥ 0 : p} x :=? {p}

RULE 38: REPETITIVE COMMAND III

{p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
{p ∧ Bi ∧ t = α} Si {t < α}, i ∈ {1, . . . , n},
p → t ∈ W

{p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n
i=1 ¬Bi}

where

(i) t is an expression which takes values in an irreflexive partial order (P,<)
that is well-founded on the subset W ⊆ P ,

(ii) α is a simple variable ranging over P that does not occur in p, t, Bi or
Si for i ∈ {1, . . . , n}.

RULE 39: FAIR REPETITION

(1) {p ∧ Bi} Si {p}, i ∈ {1, . . . , n},
(2) {p ∧ Bi ∧ z̄ ≥ 0

∧ ∃zi ≥ 0 : t[zj := if Bj then zj + 1 else zj fi]j 6=i = α}
Si

{t < α}, i ∈ {1, . . . , n},
(3) p ∧ z̄ ≥ 0 → t ∈ W

(4) {p} do ⊓⊔n
i=1 Bi → Si od {p ∧

∧n
i=1 ¬Bi}

where

(i) t is an expression which takes values in an irreflexive partial order (P,<)
that is well-founded on the subset W ⊆ P ,

(ii) z1, . . ., zn are integer variables that do not occur in p,Bi or Si, for
i ∈ {1, . . . , n},

(iii) t[zj := if Bj then zj + 1 else zj fi]j 6=i denotes the expression that re-
sults from t by substituting for every occurrence of zj in t the condi-
tional expression if Bj then zj + 1 else zj fi; here j ranges over the set
{1, . . ., n} −{i},

(iv) z̄ ≥ 0 abbreviates z1 ≥ 0 ∧ . . . ∧ zn ≥ 0,
(v) α is a simple variable ranging over P and not occurring in p, t, Bi or Si,

for i ∈ {1, . . . , n}.
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RULE 39 ′: FAIR REPETITION (IDENTICAL GUARDS)

(1′) {p ∧ B} Si {p}, i ∈ {1, . . . , n},
(2′) {p ∧ B ∧ z̄ ≥ 0 ∧ ∃zi ≥ 0 : t[zj := zj + 1]j 6=i = α}

Si

{t < α}, i ∈ {1, . . . , n},
(3′) p ∧ z̄ ≥ 0 → t ∈ W

(4′) {p} do ¤n
i=1 B → Si od {p ∧ ¬B}

where conditions (i)–(v) of Rule 39 hold.
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Auxiliary Axioms and Rules

RULE A1: DECOMPOSITION

⊢p {p} S {q},
⊢t {p} S {true}

{p} S {q}

where the provability signs ⊢p and ⊢t refer to proof systems for partial and
total correctness for the considered program S, respectively.

AXIOM A2: INVARIANCE

{p} S {p}

where free(p) ∩ change(S) = ∅.

RULE A3: DISJUNCTION

{p} S {q}, {r} S {q}

{p ∨ r} S {q}

RULE A4: CONJUNCTION

{p1} S {q1}, {p2} S {q2}

{p1 ∧ p2} S {q1 ∧ q2}

RULE A5: ∃-INTRODUCTION

{p} S {q}

{∃x : p} S {q}

where x does not occur in S or in free(q).

RULE A6: INVARIANCE

{r} S {q}

{p ∧ r} S {p ∧ q}

where free(p) ∩ change(S) = ∅.
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RULE A7: SUBSTITUTION

{p} S {q}

{p[z̄ := t̄]} S {q[z̄ := t̄]}

where ({z̄} ∩ var(S)) ∪ (var(t̄) ∩ change(S)) = ∅.

RULE A8:

I1 and I2 are global invariant relative to p

I1 ∧ I2 is a global invariant relative to p

RULE A9:
I is a global invariant relative to p,
{p} S {q}

{p} S {I ∧ q}
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Appendix C Proof Systems

For the various classes of programs studied in this book the following proof
systems for partial and total correctness were introduced.

while Programs

PROOF SYSTEM PW :
This system consists of the group
of axioms and rules 1–6.

PROOF SYSTEM TW :
This system consists of the group
of axioms and rules 1–4, 6, 7.

Recursive Programs

PROOF SYSTEM PR :
This system consists of the group of axioms
and rules 1–6, 8, and A2–A6.

PROOF SYSTEM TR :
This system consists of the group of axioms
and rules 1–4, 6, 7, 9, and A3–A6.
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Recursive Programs with Parameters

PROOF SYSTEM PRP :
This system consists of the group of axioms
and rules 1–6, 10, 11, 12, and A2–A6.

PROOF SYSTEM TRP :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 11, 13, and A3–A6.

Object-Oriented Programs

PROOF SYSTEM PO :
This system consists of the group of axioms
and rules 1–6, 10, 14–16, and A2–A6.

PROOF SYSTEM TO :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 15, 17, and A3–A6.

Object-Oriented Programs with Parameters

PROOF SYSTEM POP :
This system consists of the group of axioms
and rules 1–6, 10, 14, 18, 19, and A2–A6.

PROOF SYSTEM TOP :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 18, 20, and A3–A6.

Object-Oriented Programs with Object Creation

PROOF SYSTEM POC :
This system consists of the group of axioms
and rules 1–6, 10, 14, 18, 19, 21, 22 and A2–A7.
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PROOF SYSTEM TOC :
This system consists of the group of axioms
and rules 1–4, 6, 7, 10, 14, 18, 20–22 and A3–A7.

Disjoint Parallel Programs

PROOF SYSTEM PP :
This system consists of the group of axioms
and rules 1–6, 24, 25 and A2–A6.

PROOF SYSTEM TP :
This system consists of the group of axioms
and rules 1–5, 7, 24, 25 and A3–A6.

Parallel Programs with Shared Variables

PROOF SYSTEM PSV :
This system consists of the group of axioms
and rules 1–6, 25–27 and A2–A6.

PROOF SYSTEM TSV :
This system consists of the group of axioms
and rules 1–5, 7, 25–27 and A3–A6.

Parallel Programs with Synchronization

PROOF SYSTEM PSY :
This system consists of the group of axioms
and rules 1–6, 25, 27, 28 and A2–A6.

PROOF SYSTEM TSY :
This system consists of the group of axioms
and rules 1–5, 7, 25, 28, 29 and A3–A6.
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Nondeterministic Programs

PROOF SYSTEM PN :
This system consists of the group of axioms
and rules 1, 2, 3, 6, 30, 31 and A2–A6.

PROOF SYSTEM TN :
This system consists of the group of axioms and rules
1, 2, 3, 6, 32, 33 and A3–A6.

Distributed Programs

PROOF SYSTEM PDP :
This system consists of the proof system PN augmented
by the group of axioms and rules 34, A8 and A9.

PROOF SYSTEM WDP :
This system consists of the proof system TN augmented
by the group of axioms and rules 35 and A9.

PROOF SYSTEM TDP :
This system consists of the proof system TN augmented
by the group of axioms and rules 36 and A9.

Fairness

PROOF SYSTEM PNR :
This system consists of the proof system
PN augmented with Axiom 37.

PROOF SYSTEM TNR :
This system is obtained from the proof system TN
by adding Axiom 37 and replacing Rule 33 by Rule 38.

PROOF SYSTEM FN :
This system is obtained from the proof system TN
by replacing Rule 33 by Rule 39.



Appendix D Proof Outlines

The following formation axioms and rules were used in this book to define
proof outlines.

(i) {p} skip {p}

(ii) {p[u := t]} u := t {p}

(iii)
{p} S∗

1 {r}, {r} S∗
2 {q}

{p} S∗
1 ; {r} S∗

2 {q}

(iv)
{p ∧ B} S∗

1 {q}, {p ∧ ¬B} S∗
2 {q}

{p} if B then {p ∧ B} S∗
1 {q} else {p ∧ ¬B} S∗

2 {q} fi {q}

(v)
{p ∧ B} S∗ {p}

{inv : p} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

(vi)
p → p1, {p1} S∗ {q1}, q1 → q

{p}{p1} S∗ {q1}{q}

(vii)
{p} S∗ {q}

{p} S∗∗ {q}

where S∗∗ results from S∗ by omitting some of the intermediate asser-
tions not labeled by the keyword inv.

(viii)

{p ∧ B} S∗ {p},
{p ∧ B ∧ t = z} S∗∗ {t < z},
p → t ≥ 0

{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}
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where t is an integer expression and z is an integer variable not occurring
in p, t, B or S∗∗.

(ix)
{pi} S∗

i {qi}, i ∈ {1, . . . , n}

{
∧n

i=1 pi} [{p1} S∗
1 {q1}‖. . .‖{pn} S∗

n {qn}] {
∧n

i=1 qi}

(x)
{p} S∗ {q}

{p} 〈S∗〉 {q}
where S∗ stands for an annotated version of S.

(xi)

(1) {p ∧ B} S∗ {p} is standard,
(2) {pre(R) ∧ t = z} R {t ≤ z} for every normal

assignment and atomic region R within S,
(3) for each path π ∈ path(S) there exists

a normal assignment or atomic region R in π
such that
{pre(R) ∧ t = z} R {t < z},

(4) p → t ≥ 0

{inv : p}{bd : t} while B do {p ∧ B} S∗ {p} od {p ∧ ¬B}

where t is an integer expression and z is an integer variable not occurring
in p, t, B or S∗, and where pre(R) stands for the assertion preceding R
in the standard proof outline {p ∧ B} S∗ {p} for total correctness.

(xii)
{p ∧ B} S∗ {q}

{p} await B then {p ∧ B} S∗ {q} end {q}

where S∗ stands for an annotated version of S.

(xiii)

p →
∨n

i=1 Bi,
{p ∧ Bi} S∗

i {q}, i ∈ {1, . . . , n}

{p} if ¤n
i=1 Bi →{p ∧ Bi} S∗

i {q} fi {q}

(xiv)

{p ∧ Bi} S∗
i {p}, i ∈ {1, . . . , n},

{p ∧ Bi ∧ t = z} S∗∗
i {t < z}, i ∈ {1, . . . , n},

p → t ≥ 0

{inv : p}{bd : t} do ¤n
i=1 Bi →{p ∧ Bi} S∗

i {p} od {p ∧
∧n

i=1 ¬Bi}

where t is an integer expression and z is an integer variable not occurring
in p, t, Bi or Si for i ∈ {1, . . . , n}.
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theorem, 39
total correctness, 64

complete for, 85
of disjoint parallel programs, 253
of distributed systems, 391
of nondeterministic programs, 357
of object-oriented programs, 204
of recursive programs, 136
of while programs, 70, 71
sound for, 74

transition, 58
relation, 58
sequence, 59
system, 59

transitive, reflexive closure, 23
transputer, 406
tuple, 22

components of, 22
type, 29

argument, 29
basic, 29

higher, 29
value, 29

UNITY, 370
update

of a state, 36, 218
upper bound, 447

least, 447

variable, 30
Boolean, 30
can be modified, 57
global, 153
instance, 187
integer, 30
local, 153
normal, 187
subscripted, 32

void reference, 187

weak total correctness
of distributed systems, 391

well-founded
on a subset, 414
structure, 414

zero
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positive, 4
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Möller, M., 406, 486
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Rössig, S., 406, 487
Ruby, C., 485
Rybalchenko, A., 486

Sagiv, S., 16, 489
Salomaa, A., 478
Salwicki, A., 266, 489
Saxe, J. B., 482
Schellhorn, G., 479
Schenke, M., 406, 489
Schmitt, P. H., 17, 18, 241, 479
Schneider, F. B., 345, 489
Scholten, C. S., 26, 481
Schwartz, J. T., 482
Scott, D. S., 58, 150, 489
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[x := new], 220
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null, 187
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change(S), 57, 376
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divides, 30, 34
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p[u := t], 45

p[x := new], 220

s[u := t], 43

s[x := new], 221

var(S), 57

var(p), 41
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